(B. Pharm) (Semester - I)

L	Т	Р	С
2	-	I	2

Course Code	BP106RMT
Course Title	Remedial Mathematics – Theory

Scope:

This is an introductory course in mathematics. This subject deals with the introduction to Partial fraction, Logarithm, matrices and Determinant, Analytical geometry, Calculus, differential equation and Laplace transform.

Objectives:

Upon completion of the course the student shall be able to:-

- 1. Know the theory and their application in Pharmacy
- 2. Solve the different types of problems by applying theory
- 3. Appreciate the important application of mathematics in Pharmacy

Course Learning Outcomes (CLO):

At the end of the course, students will be able to -

- 1. Relate the theory and applications of basic mathematics with pharmacy
- 2. Discuss applications of partial fraction, limits and continuity and logarithm for pharmaceutical computation
- 3. Understand calculus and analytical geometry for pharmaceutical problems solving
- 4. Utilize the formulas of matrices and determinant for calculations related to pharmacy
- 5. Evaluate differential equations used in pharmaceutical sciences

Syllabus:

UNIT I

Teaching hours: 30 Hours 06 Hours

Partial fraction

Introduction, Polynomial, Rational fractions, Proper and Improper fractions, Partial fraction , Resolving into Partial fraction, Application of Partial Fraction in Chemical Kinetics and Pharmacokinetics

• Logarithms

Introduction, Definition, Theorems/Properties of logarithms, Common logarithms, Characteristic and Mantissa, worked examples, application of logarithm to solve pharmaceutical problems.

• Function:

Real Valued function, Classification of real valued functions,

• Limits and continuity :

Introduction, Limit of a function, Definition of limit of a function (ϵ - δ definition)

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}, \qquad \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1,$$

06 Hours

• Matrices and Determinant:

Introduction matrices, Types of matrices, Operation on matrices, Transpose of a matrix, Matrix Multiplication, Determinants, Properties of determinants, Product of determinants, Minors and co-Factors, Adjoint or adjugate of a square matrix, Singular and non-singular matrices, Inverse of a matrix, Solution of system of linear of equations using matrix method, Cramer's rule, Characteristic equation and roots of a square matrix, Cayley– Hamilton theorem, Application of Matrices in solving Pharmacokinetic equations

UNIT III

UNIT II

• Calculus

Differentiation: Introductions, Derivative of a function, Derivative of a constant, Derivative of a product of a constant and a function, Derivative of the sum or difference of two functions, Derivative of the product of two functions (product formula), Derivative of the quotient of two functions (Quotient formula) – **Without Proof**, Derivative of x^n *w.r.tx*, where *n* is any rational number, Derivative of e^x , Derivative of $\log_e x$, Derivative of a trigonometric functions from first principles (without Proof), Successive Differentiation, Conditions for a function to be a maximum or a minimum at a point. Application

UNIT IV

• Analytical Geometry

Introduction: Signs of the Coordinates, Distance formula,

Straight Line: Slope or gradient of a straight line, Conditions for parallelism and perpendicularity of two lines, Slope of a line joining two points, Slope – intercept form of a straight line

Integration: Introduction, Definition, Standard formulae, Rules of integration, Method of substitution, Method of Partial fractions, Integration by parts, definite integrals, application

UNIT V

- Differential Equations: Some basic definitions, Order and degree, Equations in separable form, Homogeneous equations, Linear Differential equations, Exact equations, Application in solving Pharmacokinetic equations
- Laplace Transform: Introduction, Definition, Properties of Laplace transform, Laplace Transforms of elementary functions, Inverse Laplace transforms, Laplace transform of derivatives, Application to solve Linear differential equations, Application in solving Chemical kinetics and Pharmacokinetics equations

Suggested Readings^: (Latest edition)

- 1. Narayan, S. Differential Calculus. S. Chand Publishers.
- 2. Panchaksharappa Gowda, D.H. Pharmaceutical Mathematics with application to Pharmacy. PharmaMed Press.
- 3. Narayan, S., & Mittal, P. K. Integral calculus. S. Chand Publishers.
- 4. Grewal, B. S. Higher Engineering Mathematics
- L= Lecture, T= Tutorial, P= Practical, C= Credit
- ^ this is not an exhaustive list

06 Hours

06 Hours

06 Hours