NIRMA UNIVERSITY

Institute of Architecture and Planning

Bachelor of Architecture

Semester-III

L	W	S	C
1	2	-	2

Course Code	2AR365
Course Title	Structure III

Course Learning Outcomes (CLO):

At the end of the course, students will be able to –

- Develop to gain understanding by using the abstract method of analysis of structures
- Evaluate basic requirement of stability and strength of materials.
- Evaluate structural elements and their importance in Structural System.

Syllabus: 15 weeks (3 hours/week)

Total Teaching hours: 45 Hr

Unit	Syllabus:		Teaching
No.	Topic	Sub Topic	hours:
1	Concept of Centre of gravity	 Determining the centroid of simple figures. Moment of inertia, its application to sections subjected to bending, determining M.I. of simple and compound sections 	9 hours
2	Resolution of forces	 Concept of triangulation and its application in pin jointed trusses Assumption in strength of materials, basic terminology, brief history of strength of materials. Concept & importance of the shear force and the bending moment. Pure Bending stress & combined direct and bending stresses 	12 hours
3	Stability, buckling of columns	 short and long columns Deflection and its importance, code provisions, study of the deflected shape of 	10 hours

			simple structures.	
		•	Solutions of problems.	
4	Concept of	•	average and maximum shears stress.	10 hours
shear stress	•	Horizontal shear stress and its variation across		
		the cross section of the beam		
5	Composite	•	Sections made up of more than one material	4 hours
	sections			

L= Lecture, W= Workshop, S= Studio, C= Credit

Suggested Readings:

- 1. Ching, Francis D. K., Building Structures Illustrated, New York, John Wiley & Sons, Inc., 2014
- 2. Deplazes, Andrea, Constructing Architecture Materials Processes Structures: A Handbook, Switzerland, Birkhauser- Publisher of Architecture, 2013
- 3. Barry, R., Construction of Buildings Vol. 1: Foundations and Oversite Concrete, Walls, Floors, Roofs, New Delhi, Affiliated East-West Press Pvt. Ltd., 1999
- 4. Biggs, John M., Introduction to Structural Dynamics, New Delhi, McGraw Hill Education India Pvt Ltd. 2014
- 5. Junnarkar, S. B., Mechanics of Structures Vol 1, Anand, Charotar Publishing House, 2012
- 6. Onouye, Barry S., Statics And Strength Of Materials For Architecture And Building Construction, Chennai, Pearson India Education Services Pvt Ltd., 2015
- 7. Khurmi, R. S., Strength of Materials: Mechanics of Solids, New Delhi, S. Chand & Company Ltd., 2013
- 8. Laursen, Harold I., Structural Analysis, New Delhi, McGraw Hill Education India Pvt Ltd, 2014
- 9. Hibbeler, Russell C., Structural Analysis, India, Pearson Education Asia Pte. Ltd., 2013
- 10. Pandit, G. S., Structural Analysis: A Matrix Approach, New Delhi, Tata McGraw-Hill Publishing Company Ltd., 2008
- 11. Charleson, Andrew., Structure as architecture : Source book for architects and structural engineers, London, Taylor & Francis, 2015
- 12. Bali, N. P., Textbook of Engineering Mathematics, New Delhi, Laxmi Publications Pvt. Ltd., 2011
- 13. Parikh, Janak, Understanding Concept of Structural Analysis and Design, Anand, Charotar Publishing House, 2000
- 14. Schodek, Daniel L. Structures. Englewood Cliffs, NJ: Prentice-Hall, 1980. Print.
- 15. Millais, Malcolm. Building Structures: From Concepts to Design. London: Spon, 2005. Print.
- 16. Rosenthal, Hans Werner., and Hans Werner. Rosenthal. Structural Decisions: The Basic Principles of Structural Theory, Their Application to the Design of Buildings and Their Influence on Structural Form. London: Chapman & Hall, 1962. Print.
- 17. Cowan, Henry J. Architectural Structures: An Introduction to Structural Mechanics. New York: Elsevier, 1976. Print.
- 18. Miret, Eduardo Torroja, J. J. Polivka, and Milos Polivka. Philosophy of Structures: English Version by J.J. Polivka and Milos Polivka. Berkeley, CA: U of California, 1962. Print.
- 19. Morgan, William, Daniel Williams, and Frank Durka. Structural Mechanics: A Revision of Structural Mechanics. Harlow: Longman, 1996. Print.
- 20. Watson, Donald, Time saver Standards for Building Materials and Systems: Design Criteria and Selection Data, New Delhi, Tata McGraw Hill Education Private Limited, 2009
- 21. National Building Code of India, 1983, Part VI, Structural Design.