NIRMA UNIVERSITY

Institute of Architecture and Planning

Bachelor of Architecture

Semester-IV

L	W	S	С
1	2	-	2

Course Code	2AR465
Course Title	Structure IV

Course Learning Outcomes (CLO):

At the end of the course, students will be able to -

- Develop conceptual understanding of structural behavior using abstract methods of analysis
- Explain understanding of Determinate and indeterminate structures.
- Develop understanding of Steel structures and its application in design

Syllabus: 15 weeks (3 hours/week)

Total Teaching hours: 45 Hr

Unit	Syllabus:		Teaching
No.	Торіс	Sub Topic	hours:
1	Analysis of indeterminate structures.	 Introduction to stiffness and distribution factors introduction to moment distribution factors introduction to moment distribution method. 	14 hours
2	Indeterminacy of a frame, comparison of post and lintel system and portal frames.	• Importance of portal frames in resisting horizontal forces.	14 hours
3	Arch as a curved element.	 Arch in history, efficiency of an arch. Three hinged arch. Simple problems to illustrate the importance of the shape of an arch, rise end conditions and loading. 	8 hours
4	Steel as a structural material	 structural systems in steel with case studies. 	9 hours

L= Lecture, W= Workshop, S= Studio, C= Credit

Suggested Readings:

- 1. Punmia, B. C., Comprehensive Design of Steel Structures, New Delhi, Laxmi Publications Pvt. Ltd., 2012
- 2. Subramanian, N., Design of Steel Structures, New Delhi, Oxford University Press, 2012
- 3. Junnarkar, S. B., Mechanics of Structures Vol 1, Anand, Charotar Publishing House, 2012
- 4. Pandya, N. C., Steam Tables: Entitely in SI Units including Mollier Chart, Anand, Charotar Publishing House, 2013
- 5. Steel Design, Newyork, DAAB Publication, 2007
- 6. Watson, Donald, Time saver Standards for Building Materials and Systems: Design Criteria and Selection Data, New Delhi, Tata McGraw Hill Education Private Limited, 2009
- 7. IS 456:2000, Indian Standard, Plain and Reinforced Concrete Code of Practice, Bureau of Indian Standards.
- 8. SP 16, Design Aids for Reinforced Concrete to IS 456
- 9. National Building Code of India, 1983
- 10. IS 1905, Code of Practice for Structural Safety of Buildings.
- 11. Corkill, P. A., H. L. Puderbaugh, and H. K. Sawyers. Structure and Architectural Design. Iowa City: Sernoll, 1974. Print.
- 12. Sandaker, Bjørn Normann, and Arne Petter. Eggen. The Structural Basis of Architecture. New York: Whitney Library of Design, 1992. Print.
- 13. Sarkisian, Mark P. Designing Tall Buildings: Structure as Architecture. New York: Routledge, 2012. Print.
- 14. Seward, Derek. Understanding Structures: Analysis, Materials, Design. Basingstoke: Palgrave Macmillan, 2003. Print.
- 15. Cowan, Henry J. Architectural Structures: An Introduction to Structural Mechanics. New York: Elsevier, 1976. Print.
- 16. Miret, Eduardo Torroja, J. J. Polivka, and Milos Polivka. Philosophy of Structures: English Version by J.J. Polivka and Milos Polivka. Berkeley, CA: U of California, 1962. Print.
- 17. Salvadori, Mario, and Robert A. Heller. Structure in Architecture: The Building of Buildings. Englewood Cliffs, NJ: Prentice-Hall, 1975. Print.
- 18. Morgan, William, Daniel Williams, and Frank Durka. Structural Mechanics: A Revision of Structural Mechanics. Harlow: Longman, 1996. Print.
- Rosenthal, Hans Werner., and Hans Werner. Rosenthal. Structural Decisions: The Basic Principles of Structural Theory, Their Application to the Design of Buildings and Their Influence on Structural Form. London: Chapman & Hall, 1962. Print.