NIRMA UNIVERSITY

Institute of Technology

B.Tech. in Electrical Engineering

Semester-III

Course Code	2EE301
Course Title	Network Analysis and Synthesis

Course Learning Outcomes (CLO):

At the end of the course, students will be able to-

L	T	P	C
3	1	0	4

- understand the basic laws, theorems and the methods of analysing electrical circuits.
- analyse the properties of coupled circuits and usage of network graph to solve circuits.
- obtain the transient and steady-state response of electrical circuits.
- understand two port network and network synthesis.

Course Code	2EE302
Course Title	Signals and Systems

L	T	P	C
2	1	0	3

Course Learning Outcomes (CLO):

At the end of the course, students will be able to-

- interpret the signals in various forms for analysis
- analyse various signals in time domain and frequency domain systems
- obtain Fourier analysis of continuous time and discrete time signals

Course Code	2EE303
Course Title	Electromagnetic Field Theory

Course Learning Outcomes (CLO):

At the end of the course, students will be able to-

L	T	P	\mathbf{C}
3	1	0	4

- apply vector calculus and coordinate system transformation in electromagnetic fields
- understand and calculate various parameters of electromagnetic fields
- apply Maxwell's equations to analyse electrical systems

Course Code	2EE304
Course Title	Analog and Digital Electronics

Course Learning Outcomes (CLO):

- L T P C 3 0 0 3
- conceptualize and analyse different electronic circuits
- select various components for electronic circuits
- design analog-digital electronic circuits for various applications

Course Code	2EE305
Course Title	Analog and Digital Electronics Laboratory

Course Learning Outcomes (CLO):

At the end of the course, students will be able to-

- compare BJT and FET technology
- suggest and choose application specific integrated circuit
- verify the operations of various analog and digital electronic circuits

L	T	P	C
0	0	4	2

Course Code	2MA303
Course Title	Applied Mathematics for Electrical Engineering

L	T	P	C
3	1	0	4

Course Learning Outcomes (CLO):

At the end of the course, students will be able to-

- comprehend and apply vector calculus and complex analysis in engineering problems
- make use of numerical methods
- apply the concept of Fourier series to solve electrical engineering problems
- use Laplace transformation technique to solve differential equations

Course Code	2HS341
Course Title	Principles of Management

Course Learning Outcomes (CLO):

- interpret the various theories and processes of management
- relate with different functional areas of management
- appreciate the role and need of managers in different organisations

L	T	P	C
2	0	0	2

Semester - IV

Course Code	2EE401
Course Title	Control Systems Engineering

Course Learning Outcomes (CLO):

At the end of the course, students will be able to-

L	T	P	C
2	0	2	3

- develop mathematical model of Linear Time Invariant (LTI) System
- understand behavior of LTI System in time and frequency domain
- understand design of controller
- understand state space representation of LTI system and concept of controllability & observability.

Course Code	2EE402
Course Title	Electrical Measurements and Transducers

Course Learning Outcomes (CLO):

At the end of the course, students will be able to-

L	T	P	C
2	0	2	3

- understand the concepts of measurement and measurement systems
- comprehend construction and working of various analog and digital instruments
- acquire knowledge on working, importance and applications of various transducers
- appreciate the relevance of data acquisition system and its application in electrical engineering

Course Code	2EE403
Course Title	Fundamentals of Power System

L	T	P	C
3	1	0	4

Course Learning Outcomes (CLO):

- understand the conventional and renewable energy sources of power generation, with associated issues and challenges
- apply the basic concepts of designing the transmission and distribution system
- know the technical specifications to be met by the utility and the consumer to ensure secure and economic functioning of the grid

Course Code	2EE404
Course Title	Transformers and DC Machines

Course Learning Outcomes (CLO):

At the end of the course, students will be able to-

L	T	P	C
3	0	2	4

- understand the construction and operating principle of transformers and DC machines
- acquire knowledge on performance indices of transformers and DC machines
- select transformers and DC machines for specific application based on characteristics
- understand the use of Permanent Magnet materials in DC machines

Course Code	2EE405
Course Title	Power Electronic Converters and Applications

Course Learning Outcomes (CLO):

At the end of the course, students will be able to-

L	T	P	C
3	0	0	3

- analyze operation of devices and choose the same suitable for an application
- evaluate various performance parameters of converters
- implement and analyze different control techniques for power electronic converters
- choose and apply converter topology suitable for an application

Course Code	2EE406
Course Title	Power Electronics Laboratory

Course Learning Outcomes (CLO):

At the end of the course, students will be able to-

L	T	P	C
0	0	4	2

- illustrate the characteristics and operation of various switching devices
- suggest triggering methods for various converters
- analyze and implement converter circuits by using suitable power semiconductor devices
- evaluate various performance parameters of converters
- apply suitable speed control method to various power electronic converter controlled dc motors

Course Code	2HS342
Course Title	Principles of Economics

Course Learning Outcomes (CLO):

- interpret the various basic economic principles
- relate the economic fundamentals with engineering practices
- infer the macro-economic aspects of engineering projects

L	T	P	C
2	0	0	2

Semester - V

EE501 Analysis of Electrical Power System [3 1 0 4]

Course Learning Outcome:

After successful completion of the course, student will be able to

- evaluate the performance parameters of transmission lines
- understand and analyze the effects of various faults in the power system
- select appropriate type of grounding system and reactive power compensation techniques

EE502 Rotating AC Machines [3 0 2 4]

Course Learning Outcome:

After successful completion of the course, student will be able to

- understand construction and operating principle of induction motor and synchronous machine
- acquire knowledge on characteristics of induction motor and synchronous machine for different operating conditions
- test and calculate performance parameters of induction motor and synchronous machine
- analyze and select machine for specific application

EE503 High Voltage Engineering [3 0 2 4]

Course Learning Outcome:

After successful completion of the course, student will be able to

- plot electric field profile for simple configurations
- select the appropriate insulation (material, thickness, gap distance) for basic applications
- understand high voltage test setup for devices
- analyze the tests results and predict the imminent equipment failure

EE504 Power Electronic Converters [3 0 2 4]

Course Learning Outcome:

- suggest converter topology based on application
- analyze and implement various control techniques for power electronic converters
- evaluate various performance parameters of converters

Course Learning Outcome:

After successful completion of the course, student will be able to

- apply different techniques to use electrical energy to obtain heating, welding, illumination and electrolysis process
- design illumination scheme to obtain required lux level at given location
- analyze for electrical energy consumption in existing building and estimate for energy efficient design

EE506 Microprocessor and Microcontroller [3 0 2 4]

Course Learning Outcome:

After successful completion of the course, student will be able to

- understand the fundamentals and generalized architecture of microprocessor and microcontroller
- develop algorithm/program of the microprocessor and microcontroller for a particular task
- interface microcontrollers with external peripherals

EE507 Mini Project-I [0 0 2 1]

Course Learning Outcome:

After successful completion of the course, students will be able to

- practice acquired knowledge within the chosen area of technology for project development
- identify, discuss and justify the technical aspects of the chosen project with a comprehensive and systematic approach
- reproduce, improve and refine technical aspects for engineering projects
- work as an individual or in a team in development of technical projects
- communicate and report effectively project related activities and findings

SP501 Fractional Course [1 0 0 0]

Course Learning Outcome:

- know the recent technological developments in industries/ R & D organizations
- understand advanced topic related to electrical engineering discipline
- correlate the fundamentals with the contemporary application areas

Semester – VI

EE601 Power System Operation and Control [3 1 2 5]

Course Learning Outcome:

After successful completion of the course, student will be able to

- formulate the network matrices and determine the load flow solution using iterative methods
- distinguish various stability aspects and analyze their effects on the performance of power system
- suggest economic dispatch of load between generating stations
- analyze the effect of load variation on the frequency of the power system network

EE602 Electrical Drives and Traction Systems [3 0 2 4]

Course Learning Outcome:

After successful completion of the course, student will be able to

- understand theoretical concepts of dynamics of electric drives
- analyze the performance of dc motor drives and induction motor drives for various operating conditions
- estimate energy consumption and decide rating of motor for traction application

EE603 Testing, Commissioning and Maintenance of Electrical Equipment [2 0 2 3]

Course Learning Outcome:

After successful completion of course, student will be able to,

- perform testing of various electrical equipment as per standard procedure and analyze results
- understand the process of commissioning
- appreciate and evaluate various maintenance methods / techniques
- suggest the remedial action to improve life of electrical equipment

EE604 Mini Project-II [0 0 2 1]

Course Learning Outcome:

- practice acquired knowledge within the chosen area of technology for project development
- identify, discuss and justify the technical aspects of the chosen project with a comprehensive and systematic approach
- reproduce, improve and refine technical aspects for engineering projects
- work as an individual or in a team in development of technical projects
- communicate and report effectively project related activities and findings

Department Elective - I

EE611 Electronic System Design [2 0 2 3]

Course Learning Outcome:

After successful completion of this course, students will be able to

- understand practical design aspects of component used in power electronic converters
- investigate the various output waveforms with necessary troubleshooting
- design and fabricate hardware for various applications

EE621 Permanent Magnet Brushless and Reluctance Motors

[2023]

Course Learning Outcome:

After successful completion of course, student will be able to

- analyse properties and applications of Permanent Magnet (PM) materials
- understand constructional aspects, operational aspects and characteristic of brushless PM and reluctance motors
- analyse brushless PM and reluctance motors with application point of view

EE631 Renewable Energy Sources [2 0 2 3]

Course Learning Outcome:

After successful completion of the course, student will be able to

- apply the concepts of renewable energy sources for electricity generation
- apply the concepts of grid integration with renewable sources
- evaluate the options and estimate the energy generation through renewable sources

EE641 Advanced Microprocessors and Microcontrollers [2 0 2 3]

Course Learning Outcome:

- understand the generalized architecture of advanced microprocessors and advanced microcontrollers
- develop algorithm/program of the advanced microcontrollers for a particular task
- interface advanced microcontrollers with external peripherals

Department Elective - II

EE612 Signals and Systems [3 0 0 3]

Course Learning Outcome:

After successful completion of the course, students will be able to

- represent signals in various forms for analysis
- analyze various signals in time domain and frequency domain systems
- carry out Fourier analysis of continuous time and discrete time signals

EE622 Dynamics and Modelling of Electrical Machines [3 0 0 3]

Course Learning Outcome:

After successful completion of the course, student will be able to

- understand mathematical model of conventional electrical machines
- apply concept of reference frame theory for various ac machines
- analyze and predict the behavior of electrical machines for various operating conditions

EE632 Extra High Voltage Transmission [3 0 0 3]

Course Learning Outcome:

After successful completion of course, student will be able to

- critically evaluate high voltage ac and dc system with all aspects
- design of transmission line with all aspects
- visualize behavior of transmission system under different conditions

SP601 Capstone Course [1 0 0 0]

Course Learning Outcome:

- solve the typical problems requiring higher order thinking skills
- link the different topics of curriculum studied and apply the concepts for solving typical questions of competitive exams
- perform better in final year placement process

EE701 Electrical Machine Design

[3 0 2 4]

Course Learning Outcome:

After successful completion of this course, students will be able to

- apply theoretical concepts in designing conventional electrical machines
- select appropriate material for designing electrical machines
- estimate the machine performance based on the design outcome by data interpretation
- demonstrate the design by appropriate drawings

EE702 Digital Signal Processors for Electrical Engineering

[2023]

Course Learning Outcome:

After successful completion of the course, student will be able to

- understand and appreciate the importance of architecture, memory and various instruction sets used in digital signal processers for various electrical applications
- initialize and perform basic coding in DSP for various electrical applications
- apply the knowledge of interfacing hardware and software for real time systems

EE703 Power System Protection and Switchgear [3 0 2 4]

Course Learning Outcome:

After successful completion of the course, student will be able to

- identify the main components and features of a protection scheme
- understand fault clearing phenomena under abnormal conditions in different type of circuit breakers
- acquire skill to design the feasible protection systems needed for each main part of a power system
- apply conventional and numerical relays to the protection of rotating machines, busbars, transformers, transmission lines and distribution network

EE704 Minor Project [0 0 4 2]

Course Learning Outcome:

- practice acquired knowledge within the chosen area of technology for project development
- identify, discuss and justify the technical aspects of the chosen project with a comprehensive and systematic approach
- reproduce, improve and refine technical aspects for engineering projects
- work as an individual or in a team in development of technical projects
- report project related activities effectively to peers and mentors

Department Elective - III

EE713 Application of Power Electronics in Power System [2 0 2 3]

Course Learning Outcome:

After successful completion of course, student will be able to

- understand various types of FACTS (Flexible AC Transmission Systems) controllers and their applications
- investigate and suggest solution for various power quality issues
- appreciate the role of power electronics in power systems
- apply the power electronic converter for given power quality issues

EE723 Design of Permanent Magnet Brushless and Reluctance Motors [2 0 2 3]

Course Learning Outcome:

After successful completion of this course, students will be able to

- understand and apply design aspects of permanent magnet brushless and reluctance motors
- select appropriate material for design of permanent magnet brushless and reluctance motors
- design permanent magnet brushless and reluctance motors
- estimate and analyze performance of permanent magnet brushless and reluctance motors

EE733 Computer Techniques in Power System [2 0 2 3]

Course Learning Outcome:

- employ and develop computer techniques to determine various power system studies and analyze the same
- develop the mathematical model for economic load dispatch and prepare the unit commitment schedule
- understand and analyze contingency & security studies

Department Elective - IV

EE714 Electromagnetic Interference and Compatibility [3 0 0 3]

Course Learning Outcome:

After successful completion of the course, student will be able to

- understand EMI/EMC problems in electrical systems
- analyze the effects of EMI on system performance
- select appropriate technique to reduce the EMI effects on electrical systems

EE724 Control of Electric Drives [3 0 0 3]

Course Learning Outcome:

After successful completion of this course, students will be able to

- understand control aspects of electric drives
- select appropriate control strategy for given application
- integrate schematic blocks to control electric drives
- analyze performance of electric drives

EE734 Advanced Electrical Power System [3 0 0 3]

Course Learning Outcome:

After successful completion of the course, student will be able to

- understand the concepts of preventive, emergency and restorative control of power system
- forecast the loading and estimate the operating state of power system
- analyze and determine the voltage stability of a power system

EE744 Electric Vehicles [3 0 0 3]

Course Learning Outcome:

- compare electric vehicles with fossil fuel driven vehicles and comprehend the basics of vehicle mechanics,
- analyse the fundamental electrochemistry of battery and sustainability of advanced energy storage systems,
- select suitable motor and understand the drive train of electric vehicles,
- gain broad knowledge of hybrid vehicles, networks, communications, actuators and controls used in modern automotive systems.

EE801 Major Project [0 0 30 21]

Course Learning Outcome:

- use various tools and techniques to study existing systems
- critically analyse existing systems, thereby select and justify parameters to be improved
- start and manipulate proposed engineering solution as per industry / research / societal need
- achieve precision in uses of the tools related to their experiments/fabrication
- reorganize and refine various components of technology to optimize the resources at large
- appraise the potential of technology for scalability and wide spectrum of applications
- report project related activities effectively to peers, mentors and society
- follow and value health, safety and ethical practices during project