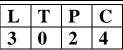
# Nirma University Institute of Technology M.Tech. in Electrical Engineering (Electrical Power Systems)

#### Semester – I

| <b>Course Code</b>  | 3EE2109                      |  |       |   |
|---------------------|------------------------------|--|-------|---|
| <b>Course Title</b> | <b>Power System Dynamics</b> |  |       |   |
|                     |                              |  | <br>_ | ~ |

#### **Course Learning Outcomes (CLO):**


L T P C 3 0 0 3

At the end of the course, students will be able to-

- 1. model various system components, apparatus mathematically
- 2. analyze effects of changes in any of the model parameter(s)
- 3. express the system dynamics, mathematically prove it and suggest corrective actions

| <b>Course Code</b>  | 3EE2110                      |   |   |   |   |
|---------------------|------------------------------|---|---|---|---|
| <b>Course Title</b> | <b>Power System Analysis</b> |   |   |   |   |
|                     |                              | L | Т | Р | C |

## **Course Learning Outcomes (CLO):**



At the end of the course, students will be able to-

- 1. select and apply the most appropriate algorithm for load–flow and short circuit studies.
- 2. formulate and solve problems related with economic operation of power system.
- 3. demonstrate understanding about complex issues related to security and state estimation of power system.

| <b>Course Code</b>  | 3EE2111                           |
|---------------------|-----------------------------------|
| <b>Course Title</b> | Power Electronics in Power System |

# **Course Learning Outcomes (CLO):**

L T P C 3 0 2 4

At the end of the course, students will be able to-

- 1. illustrate the operation and control of power electronic converters
- 2. devise the control of static VAR compensators
- 3. analyse different power quality issues
- 4. acquire knowledge about the harmonics, harmonic introducing devices, effect of harmonics on system equipment & loads and harmonic filtering

| <b>Course Code</b>  | 3EE2112                     |
|---------------------|-----------------------------|
| <b>Course Title</b> | Renewable Energy Technology |

#### **Course Learning Outcomes (CLO):**

At the end of the course, students will be able to-

- 1. interpret the economics of renewable energy systems
- 2. conceptualize and design photovoltaic system
- 3. acquire knowledge about different types of solar and wind energy conversion technology and its grid interface

| L | T | P | C |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

 $\mathbf{C}$ 

L

3

T

0

| <b>Course Code</b>  | 3EE2113                            |
|---------------------|------------------------------------|
| <b>Course Title</b> | Protective Relaying and Switchgear |

# **Course Learning Outcomes (CLO):**

At the end of the course, students will be able to-

- 1. judge fault clearing phenomena under abnormal conditions
- 2. develop mathematical approach towards protection
- 3. select appropriate algorithm for numerical protection
- **4.** implement various protection schemes and use modern approaches of relaying in power system protection

#### Semester - II

| <b>Course Code</b>  | 3EE2210                            |
|---------------------|------------------------------------|
| <b>Course Title</b> | Power System Stability and Control |

#### **Course Learning Outcomes (CLO):**

L T P C 3 0 2 4

At the end of the course, students will be able to-

- 1. articulate causes and effects of different types of power system stability
- 2. apply and adapt the applications of mathematics and engineering tools in the analysis of stability problems
- 3. suggest possible solution(s) to address the stability issue(s)

#### Dept. Elective - I

| <b>Course Code</b>  | 3EE22D101                      |  |
|---------------------|--------------------------------|--|
| <b>Course Title</b> | <b>Power System Transients</b> |  |
|                     |                                |  |

# **Course Learning Outcomes (CLO):**

L T P C 3 0 2 4

At the end of the course, students will be able to -

- 1. analyse the effects of various changes in circuit parameters
- 2. examine the causes of transients, simulate and analyse them
- 3. suggest appropriate solution for case(s) / problem(s) arising out of power system transients

| <b>Course Code</b>  | 3EE22D102                            |
|---------------------|--------------------------------------|
| <b>Course Title</b> | Advances in High Voltage Engineering |

# **Course Learning Outcomes (CLO):**

L T P C 3 0 2 4

At the end of the course, students will be able to -

- 1. decide appropriate insulating material for HV applications
- 2. prepare specifications, design the circuit for the HV insulation test systems
- 3. apply pulse power technology for insulation testing and societal benefits
- 4. choose proper test method for non-destructive testing of HV apparatus

| <b>Course Code</b>  | 3EE22D103                                            |
|---------------------|------------------------------------------------------|
| <b>Course Title</b> | Applications of AI and Optimization in Power Systems |

# **Course Learning Outcomes (CLO):**

L T P C 3 0 2 4

At the end of the course, students will be able to-

- 1. Make use of classical and advanced techniques in optimization
- 2. apply knowledge of optimization theory in electrical power systems
- 3. develop AI / optimization based solutions for power system problems

| <b>Course Code</b>  | 3EE22D201                       |
|---------------------|---------------------------------|
| <b>Course Title</b> | Electrical Distribution Systems |

#### **Course Learning Outcomes (CLO):**

At the end of the course, students will be able to-

- L T P C 3 0 0 3
- 1. apply different techniques to analyse electrical distribution system
- 2. design distribution management system and distribution system automation
- 3. solve distribution system problems with optimization

| <b>Course Code</b>  | 3EE22D202                  |
|---------------------|----------------------------|
| <b>Course Title</b> | Restructured Power Systems |

#### **Course Learning Outcomes (CLO):**

At the end of the course, students will be able to -

- 3 0 0 3
- 1. analyze various Power market models, their operations and requirements
- 2. identify the roles and responsibilities of different entities in Power market
- 3. explore and resolve issues to optimize the power system economics using various models and markets

| <b>Course Code</b>  | 3EE22D203                           |
|---------------------|-------------------------------------|
| <b>Course Title</b> | <b>Distributed Power Generation</b> |

| L | T | P | C |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

#### **Course Learning Outcome (CLO):**

At the end of the course, students will be able to -

- 1. explore specific renewable generation technology for use and related economics
- 2. design microgrid for a standalone system, integration with grid and solve related issues
- 3. perform system studies for distributed power generation

#### Dept. Elective - III

| <b>Course Code</b> | 3EE22D301              | L | T | P | C |
|--------------------|------------------------|---|---|---|---|
| Course Title       | Substation Engineering | 3 | 0 | 0 | 3 |

#### **Course Learning Outcomes (CLO):**

At the end of the course, students will be able to -

- 1. apply the electrical concepts in designing and operation of substations
- 2. plan the protection aspects pertaining to equipment and human safety in the substation
- 3. suggest approaches for substation automation, be familiarise about integration and communication protocols

| <b>Course Code</b>  | 3EE22D302               |
|---------------------|-------------------------|
| <b>Course Title</b> | Smart Grid Technologies |

# **Course Learning Outcome (CLO):**

At the end of the course, students will be able to -

L T P C 3 0 0 3

3

- 1. select grid architecture(s) and evaluate implementation aspects / issues
- 2. offer integration of smart technologies into electric power grid and provide deployment solution(s)
- 3. examine impact of policies and market framework for smart grid

| <b>Course Code</b>  | 3EE22D303                     |
|---------------------|-------------------------------|
| <b>Course Title</b> | EHV AC Transmission and FACTS |

#### **Course Learning Outcomes (CLO):**

At the end of the course, students will be able to -

- 1. estimate the line parameters of EHV AC transmission lines
- 2. compute electrostatic field of AC lines and analyze their effect on voltage gradient
- 3. conceptualize the design of EHV lines with respect to steady & transient limits
- 4. analyze different types of FACTS controllers and their role in improving power system performance

| <b>Course Code</b>  | 3EE2211       |
|---------------------|---------------|
| <b>Course Title</b> | Minor Project |

# **Course Learning Outcomes (CLO):**

| L | $\mathbf{T}$ | P  | C |
|---|--------------|----|---|
| 0 | 0            | 10 | 5 |

After successful completion of the course, student will be able to -

- 1. broadly select the area / sub domain of choice to pursue research
- 2. develop hands on expertise on a relevant electrical engineering software / hardware
- 3. analyze performance of a specific electrical network with a detailed insight into its various functional components / models
- 4. evaluate any electrical network problem / issue with domain related applications

| <b>Course Code</b>  | 3SS1201                      |
|---------------------|------------------------------|
| <b>Course Title</b> | Research Methodology and IPR |

## **Course Learning Outcomes (CLO):**

At the end of the course, students will be able to -

- L T P C 2 0 0 2
- 1. formulate a research problem for a given engineering domain.
- 2. analyse the available literature for given research problem.
- 3. develop technical writing and presentation skills.
- 4. comprehend concepts related to patents, trademark and copyright.

#### Semester - III

| <b>Course Code</b>  | 3EE2302                |
|---------------------|------------------------|
| <b>Course Title</b> | Major Project Part - I |

| L | T | P | C  |
|---|---|---|----|
| - | - | - | 14 |

## **Course Learning Outcomes (CLO):**

After successful completion of the course, student will be able to -

- 1. understand the issues related with the recent trends in the field of engineering and its applications
- 2. formulate the problem definition, analyze and carry out functional simulation
- 3. design, implement, test and verify the engineering solution related to problem definition
- 4. compile, comprehend and present the work carried out
- 5. manage project

#### Semester - IV

| <b>Course Code</b>  | 3EE2402                 |
|---------------------|-------------------------|
| <b>Course Title</b> | Major Project Part - II |

| L | T | P | C  |
|---|---|---|----|
| • | • | • | 14 |

## **Course Learning Outcomes (CLO):**

After successful completion of the course, student will be able to -

- 1. understand the issues related with the recent trends in the field of engineering and its applications
- 2. formulate the problem definition, analyze and carry out a functional simulation
- 3. design, Implement, test and verify the engineering solution related to problem definition
- 4. compile, comprehend and present the work carried out
- 5. manage project