A PROJECT REPORT
ON

?SMART TRAFFIC CONTROL SYSTEM”

Submitted to
NIRMA UNIVERSITY

In Partial Fulfilment of the Requirement for the Award of

IDEA LAB FISCAL YEAR 2019-2020

BY
ANANT RAINA 17BEC010
ABHISHEK RAKHOLIYA 17BEC078
MOSAM PATEL 17BEC067

SHIVANSHU UPADHYAY 17BECI121

UNDER THE GUIDANCE OF
DR. TANISH ZAVERI

ﬁ NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY

NAAC ACCREDITED *A’ GRADE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY
AHMEDABAD, GUJARAT - 384281
2019-2020

Acknowledgements

We are profoundly grateful to Dr. Tanish Zaveri for his expert guidance and
continuous encouragement throughout to see that this project rights its target since
its commencement to its completion.

We would like to express deepest appreciation towards Dr. RN Patel, Director,
ITNU, Dr. Dhaval Pujara, Head of Department of Electronics and Communica-
tion Engineering and Dr. Akash Mechwan, Project Coordinator, Idea Labs whose
invaluable guidance supported us in completing this project.

At last we must express our sincere heartfelt gratitude to all the staff members of
Electronics and Communication Engineering Department who helped me directly or

indirectly during this course of work.

MOSAM PATEL
ANANT RAINA
ABHISHEK RAKHOLIYA
SHIVANSHU UPADHYAY

ABSTRACT

Traffic in India is one of the premier causes of tardiness for the working class
society today. With increasing population this problem is only expected to increase.
Systems, especially electronic in nature are quick to get obsolete when certain pa-
rameters overflow and this is a perfect case for such a scenario. Not only is the
current traffic management system obsolete, it lacks any feedback loop: a parameter
that controls the output in such a way that both the computation and the latency is
optimized.

We propose to solve this very issue with a SMART TRAFFIC CONTROL SYS-
TEM, one that assigns the density of cars on a particular junction to allocate time
dynamically for the lights to switch. This proposal seemingly solves all the inherent
issues that come with the current system and hopes to add feedback loops to it with
minimum possible latency. We also realize other issues such as blocked ambulances
and implement priority queues and interrupts to solve this issue. As of the validation
of this report, we used the NVIDIA Jetson Nano for computation and the YOLO
Object Detection Algorithm ported to support TensorFlow Lite for ease of execution
on the Nano. More details about the hardware and software has been documented
in detail in this report. Keywords: YOLO, Control Systems, Algorithms, Camera,
OpenCYV, Jetson Nano, GSM

Contents

1 Introduction

4.1 Conclusion
4.2 Future Scope

[.1 Motivation e e
1.2 Proposed Hardware and Required Budget
1.3 Hardwarein-Depth
1.3.1 NVIDIAJetsonNano.
1.3.2 GSM Module SIMSOOA
1.3.3 Timer Module TM1637
1.4 Softwarein-Depth
1.41 JetsonNanoSetup
1.42 YOLO: YouOnly LookOnce
1.43 OpenCV
1.44 TensorFlow
2 System WorkFlow
2.1 FlowDiagram
2.1.1 MainPipeline,
2.1.2 The Interrupt System
3 Results and Inferences
3.1 Results. o e
3.2 Issues Encountered
3.2.1 Jetson’s Capabilitiestothetest
3.2.2 Jetson operational voltage
323 Jetsonlacks wifimodule
3.2.4 Lack of hardware for Junction testing

Conclusions and Future Scope

O 00 4 3 O & W W N DN

—
)

11
11
11
12

13
13
13
13
14
14
14

References

16

List of Figures

1.1 The NVIDIAJetsonNano
1.2 GSM Module SIM80O0A
1.3 The TM1637 Timer Module
1.4 GetSDcardready foraflash
1.5 Balena Etcher Interface

O OO0 0 O L W

1.6 ' YOLOV3 performance versus similar popular models

2.1 Flow Diagram for Smart Traffic Control System 11

Smart Traffic Control System

Chapter 1

Introduction

1.1 Motivation

As stated before, the current system has started to become inconvenient in incapable
of handling the sheer influx of population and vehicles entering the ecosystem. A
new system needs to replace the current time-based triggering in traffic control sys-
tem. Traffic in many countries becomes unmanageable due to congestion and high
density. We wish to propose a new system that leverages this very fact and create
map out the density to act as the feedback loop, instead of the conventional time-
based loops.

Another major issue with the current system materializes itself during emer-
gencies such as ambulances passing or law enforcement agencies wanting a clear
path. The current system doesn’t take into account its surroundings and how they
may affect the timing algorithms and hence we can often see poor management of
accidents or passing ambulances. The system we propose will make an attempt to
offer solutions for this very purpose.

1.2 Proposed Hardware and Required Budget

This project was thought-up with a certain type of hardware and software affects
in mind. The budget for its inception was accordingly provided by the institute for
which we are grateful. Here is an approximate mapping of how the budget was used.

| Hardware/Software Package | Particulars Costing |
Camera Module iBALL CHD20.0 1499 INR
Embedded Processor NVIDIA Jetson Nano | 9999 INR
GSM Module SIMS00A 1000 INR
Timer Module TM1637 150 INR

Table 1.1: Costing Dynamic for Smart Traffic Control System

Department of Electronics and Communication Engineering, Institute of Technology Nirma 1
University, Ahmedabad

Smart Traffic Control System

1.3 Hardware in-Depth

This section delves deeper into the hardware used for the purpose of this project
and also the requirements for their efficient working. The purpose of this section is
to open dialogue over the use of alternatives to our propositions and also to make
more efficient models as the project progresses into the hands of more capable and
well-versed groups.

1.3.1 NVIDIA Jetson Nano

NVIDIA Jetson Nano is an embedded system-on-module (SoM) and developer kit
from the NVIDIA Jetson family, including an integrated 128-core Maxwell GPU,
quad-core ARM A57 64-bit CPU, 4GB LPDDR4 memory, along with support for
MIPI CSI-2 and PCle Gen2 high-speed I/O. Jetson Nano runs Linux and provides
472 GFLOPS of FP16 compute performance. It is a powerful computer that lets
you run multiple neural networks in parallel for applications like image classifica-
tion, object detection, segmentation, and speech processing. All in an easy-to-use
platform that runs in as little as 5 watts.

Figure 1.1: The NVIDIA Jetson Nano

It’s simpler than ever to get started! Just insert a microSD card with the system
image, boot the developer kit, and begin using the same NVIDIA JetPack SDK
used across the entire NVIDIA Jetson™ family of products. JetPack is compatible
with NVIDIA’s world-leading Al platform for training and deploying Al software,
reducing complexity and effort for developers.

Department of Electronics and Communication Engineering, Institute of Technology Nirma 2
University, Ahmedabad

Smart Traffic Control System

Ports & Interfaces

1. 4x USB 3.0 A (Host)
2. USB 2.0 Micro B (Device)
3. MIPI CSI-2 x2 (15-position Camera Flex Connector)
4, HDMI 2.0
5. DisplayPort
6. Gigabit Ethernet (RJ45)
7. M.2 Key-E with PCle x1
8. MicroSD card slot
9. (3x) I2C, (2x) SPI, UART, I12S, GPIOs
Specifications
GPU 128-core Maxwell
CpPU Quad-core ARM A57 @ 1.43 GHz
Memory 4 GB 64-bit LPDDR4 25.6 GB/s
Storage microSD (not included)
Video Encode 4K @ 30 — 4x 1080p @ 30 — 9x 720p @ 30 (H.264/H.265)
Video Decode | 4K @ 60 — 2x 4K @ 30 — 8x 1080p @ 30 — 18x 720p @ 30 (H.264/H.265)
Camera 2x MIPI CSI-2 DPHY lanes
Connectivity Gigabit Ethernet, M.2 Key E
Display HDMI and display port
USB 4x USB 3.0, USB 2.0 Micro-B
Others GPIO, I12C, 128, SPI, UART
Mechanical 69 mm x 45 mm, 260-pin edge connector

Table 1.2: Specifications

1.3.2 GSM Module SIMS800A

SIM8O00A is a complete Quad-band GSM/GPRS solution in a SMT type which can
be embedded in the customer applications. SIM800OA can transmit Voice, SMS and

data information with low power consumption. With tiny size of 24*24*3mm, it can

fit into slim and compact smart traffic control system design. Featuring Bluetooth

and Embedded AT, it also allows total cost savings.

Interfaces

1. 68 SMT pads

2. Analog audio interface
3. PCM interface(optional)

Department of Electronics and Communication Engineering, Institute of Technology Nirma 3
University, Ahmedabad

Smart Traffic Control System

10.
1.
12.
13.

RSP R

Figure 1.2: GSM Module SIMS800A

SPI interface (optional)

RTC backup

Serial interface

USB interface

Interface to external SIM 3V/1.8V
Keypad interface

GPIO

ADC

GSM Antenna pad

Bluetooth Antenna pad

Software Specifications

—_
)

e A o

0710 MUX protocol
Embedded TCP/UDP protocol
FTP/HTTP

MMS

E-MAIL

DTMF

Jamming Detection

Audio Record

TTS (optional)

. Embedded AT (optional)

Specifications for SMS via GSM/GPRS

I.

Point to point MO and MT

Department of Electronics and Communication Engineering, Institute of Technology Nirma

University, Ahmedabad

Smart Traffic Control System

2. SMS cell broadcast
3. Text and PDU mode

Specifications for voice

Tricodec

Half rate (HR)

Full rate (FR)

Enhanced Full rate (EFR)

AMR

Half rate (HR)

Full rate (FR)

Hands-free operation (Echo suppression)

® Nk wD =

1.3.3 Timer Module TM1637

TM1637 DISPLAY module is used for displaying numbers. The module consists
of four 7- segment displays working together. The module working is based on
“‘TM1637’ IC present internally and hence the name “TM1637 display’.

13
Wi even

=gt amplay aa

|
- -
— -
- -
s -
- am
= -
— -
— -
- -

-

Figure 1.3: The TM1637 Timer Module

Pin Configuration

1. VCC: Connected to power source.
2. GND: Connected to ground.

3. DIO: Data Input/output pin

4. CLK: Clock pin

Department of Electronics and Communication Engineering, Institute of Technology Nirma 5
University, Ahmedabad

Smart Traffic Control System

Features and Specifications

e BRSNS A

Two wire interface

Eight adjustable luminance levels
Grove compatible interface (3.3V/5V)
Four alpha-numeric digits

Potable size

Operating voltage: 3.3V — 5.5V
Operating current consumption: 80mA
Operating temperature: -10°C to +80°C

1.4 Software in-Depth

Now that we have covered the hardware used, it is time to understand all the software

packages required to get the hardware setup and ready

1.4.1 Jetson Nano Setup

In order to install an operating system on the Jetson Nano, the following steps must

be undertaken:

1.

Download the Jetson Nano Developer Kit SD Card Image, and note where it
was saved on the computer.

. Download, install, and launch SD Memory Card Formatter for Windows. (Re-

fer Fig 1.4).

. Select card drive and Select “Quick format”. Leave “Volume label” blank.
. Click “Format” to start formatting, and “Yes” on the warning dialog

. Download, install, and launch Balena Etcher. (Refer Fig 1.5)

. Click “Select image” and choose the zipped image file downloaded earlier.

. Click “Select drive” and choose the correct device. Click “Flash!” It will take

Etcher about 10 minutes to write and validate the image if your microSD card
1s connected via USB3.

. After Etcher finishes, Windows may let you know it doesn’t know how to read

the SD Card. Just click Cancel and remove the microSD card.

Department of Electronics and Communication Engineering, Institute of Technology Nirma 6
University, Ahmedabad

Smart Traffic Control System

I SD Card Formatter hed
File Help
Select card
B w
Refresh
Card information
Type SDHC s-)
Capacity 29.30 GB
Formatting options
(® Quick format

(O Overwrite format
CHS format size adjustment

Volume label

Format

5D Logo, SDHC Logo and SDXC Logo are trademarks of SD-3C, LLC.

Figure 1.4: Get SD card ready for a flash

@ balenaEicher

Figure 1.5: Balena Etcher Interface

1.4.2 YOLO: You Only Look Once

You only look once (YOLO) is a state-of-the-art, real-time object detection system.
On a Pascal Titan X it processes images at 30 FPS and has a mAP of 57.9% on
COCO test-dev. Comparison to Other Detectors

YOLOV3 is extremely fast and accurate. In mAP measured at .5 IOU YOLOV3
is on par with Focal Loss but about 4x faster. Moreover, you can easily tradeoff
between speed and accuracy simply by changing the size of the model, no retraining
required!

Prior detection systems repurpose classifiers or localizers to perform detection.
They apply the model to an image at multiple locations and scales. High scoring
regions of the image are considered detections.

YOLO use a totally different approach. YOLO applies a single neural network
to the full image. This network divides the image into regions and predicts bounding
boxes and probabilities for each region. These bounding boxes are weighted by the

Department of Electronics and Communication Engineering, Institute of Technology Nirma 7
University, Ahmedabad

Smart Traffic Control System

Figure 1.6: YOLOV3 performance versus similar popular models

predicted probabilities.

YOLO has several advantages over classifier-based systems. It looks at the
whole image at test time so its predictions are informed by global context in the
image. It also makes predictions with a single network evaluation unlike systems like
R-CNN which require thousands for a single image. This makes it extremely fast,
more than 1000x faster than R-CNN and 100x faster than Fast R-CNN. YOLOv3
uses a few tricks to improve training and increase performance, including: multi-
scale predictions, a better backbone classifier, and more.

1.4.3 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision
and machine learning software library. OpenCV was built to provide a common
infrastructure for computer vision applications and to accelerate the use of machine
perception in the commercial products. Being a BSD-licensed product, OpenCV
makes it easy for businesses to utilize and modify the code.

The library has more than 2500 optimized algorithms, which includes a com-
prehensive set of both classic and state-of-the-art computer vision and machine
learning algorithms. These algorithms can be used to detect and recognize faces,
identify objects, classify human actions in videos, track camera movements, track
moving objects, extract 3D models of objects, produce 3D point clouds from stereo
cameras, stitch images together to produce a high resolution image of an entire
scene, find similar images from an image database, remove red eyes from images
taken using flash, follow eye movements, recognize scenery and establish markers

Department of Electronics and Communication Engineering, Institute of Technology Nirma 8
University, Ahmedabad

Smart Traffic Control System

to overlay it with augmented reality, etc.

It has C++, Python, Java and MATLAB interfaces and supports Windows,
Linux, Android and Mac OS. We will be using OpenCV for receiving frames from a
camera module and on the Python Linux platform. Jetson Nano comes pre-installed
with opencv-python.

1.4.4 TensorFlow

YOLOV3, requires a tensorflow and darknet backend, as per its documentation.
Largely, tensorflow is the penultimate library for deep learning and Al computa-
tion. TensorFlow offers multiple levels of abstraction so you can choose the right
one for your needs. Build and train models by using the high-level Keras API, which
makes getting started with TensorFlow and machine learning easy. If you need more
flexibility, eager execution allows for immediate iteration and intuitive debugging.
For large ML training tasks, use the Distribution Strategy API for distributed training
on different hardware configurations without changing the model definition.

Installing Tensorflow on Jetson Nano

Installing Jetson Nano Tensorflow Binaries can be found here:
https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/index.html
WARNING: There might be an issue installing the hSpy binary when execut-

ing the commands for tensorflow dependencies. Should such an issue arise, simply

remove h5py from the list and install it separately via

sudo apt-get install h5py

Department of Electronics and Communication Engineering, Institute of Technology Nirma 9
University, Ahmedabad

Smart Traffic Control System

Chapter 2

System WorkFlow

2.1 Flow Diagram

GSM fired by
Ambulance?

ocus Shifs to
amera Module

o 1

OpenCV

o

Focus Shifts to GSM
Module

Receive frame from Get Junction of signal
Camera(Opercv)/ / source (GSM Module)

GSM Junction =
N — YOLO Algorithm GREEN
Fired on Frame All other Junctions =
RED
Halt until delay_time

ed NO
T
[-

Haltundl halt_time

(Wait unit completion —

Figure 2.1: Flow Diagram for Smart Traffic Control System

2.1.1 Main Pipeline

The flow diagram for the system can be seen in Fig 2.1. Let us focus for the main
branch for now. First off, assuming no interrupt from GSM module is fired, OpenCV
calls upon the camera module to render a frame and return it back to the Python inter-
face. Once that is done, the frame received is input to the modified YOLOv3 model
that has been modified to return the number of vehicles that are present on a junction.
The beauty of this form of detection is that even if the number of cars that are really
present on the junction is incorrectly identified, the timing allocation ahead in the
pipeline is interested in the bigger picture: the density of cars in the area than than

Department of Electronics and Communication Engineering, Institute of Technology Nirma 10
University, Ahmedabad

Smart Traffic Control System

the actual number, any minor inaccuracies in the model are largely ignored. This
operation is similarly performed on all three junctions. One master Jetson demands
values from the three Jetson slave modules and waits until the values are received.
The latency values and discussions are noted in Results and Conclusions section.
Once the densities are obtained, a timing allocator built solely in python, per-
forms allocation of the times the green light will be on for each junction. To avoid a
starvation problem, a minimum time limit has been allocated if the time calculated
becomes too low for the vehicles to clear practically. Based on the density values,
a priority queue is generated, that decides which whether an interrupt has to be ex-
ecuted or the normal execution continues. Once the time values are fixed, the timer
module is fired that counts down the given time until completion. The master is also
required to communicate the timers to the slaves. Due to lack of separate hardware,
we simply for testing purposes, communicate the master nano with itself. This is an
indication that the overhead values we cite must be taken with a grain of salt.

2.1.2 The Interrupt System

We can see in the Fig 2.1 that there exists a new interrupt system that can stall the
main pipeline. It has the highest priority in timing allocation, irrespective of the
values that are decided to be allocated for that run. An ambulance can now send
a text message on a predefined number, that, if contains a very specific string of
characters that will only be revealed to ambulance and law enforcement agencies,
will trigger the Jetson to use the GSM module and find out which junction has an
ambulance coming through it. Once this is determined, we may push a predefined
time into the allocation queue, with the junction having the ambulance having first
go and the highest time. Once this time passes, normal operation can be resumed.
This solution may not be the most optimized solution, but takes into account multiple
agencies and also leaves room for improvement.

Department of Electronics and Communication Engineering, Institute of Technology Nirma 11
University, Ahmedabad

Smart Traffic Control System

Chapter 3

Results and Inferences

3.1 Results

3.2 Issues Encountered

There were a lot of issues that we faced when dealing with this system. Some were
minor issues easily fixed like throughput and memory, but some were potent and
needed attention. Potent issues are discussed here.

3.2.1 Jetson’s Capabilities to the test

We first started off with a Raspberry Pi1 3B+ and YOLOv3 without the tiny weights.
We knew that the Pi would not be able to handle detecting all of the objects, but
were still optimistic. As expected, the Pi crashed as soon as the model weights
were loaded. We needed a new solution, so one that was proposed was to only
detect vehicles and disable the bounding boxes around other objects. This obviously
reduced a lot of processing, but was still not enough to sustain on a Pi. The next
step was to use YOLOV3 tiny, which was still proving to be too tough for the Pi. A
decision was made to switch to the Jetson Nano due to its fame in AI computation.
The model still failed to exeucte and crashed upon loading weights. In order to
reduce the stress on hardware and to concurrently reduce throughput, the following
changes were made:

1. Porting the YOLO model from Tensorflow to TfLite, a sister library to tensor-
flow optimized for embedded devices.

2. Any form of bounding boxes rendered were removed: no frame can now be vi-
sualized. The model had garnered enough faith and we did not need to observe
the detection output.

3. The model was made to return only the count of the number of vehicles on the

Department of Electronics and Communication Engineering, Institute of Technology Nirma 12
University, Ahmedabad

Smart Traffic Control System

junction. This made it easier for data transfer within the pipeline.

4. A new library NNPACK was found that further reduced the computation. Since
we were unable to port NNPACK to run with our model in-code and had to rely
on the terminal to run NNPACK, this modification was removed in the final
build.

5. A change was introduced in the input to the YOLO model. Instead of the model
taking as input a video feed, we unanimously agreed to take an image of the
junction at a specific time interval and use that as input for processing.

Taking the following steps greatly increased efficiency in the model and im-
proved throughput tenfold.

3.2.2 Jetson operational voltage

As it so happens the Jetson Nano operates at 3.3V logic level to reduce the power
consumption. However many sensors run at 5V logic level and so an interfacing
level-shifter had to be introduced that managed this for us.

3.2.3 Jetson lacks wifi module

The Jetson nano lacks an implicit wifi module but does support a module externally.
It also supports ethernet connections via the RJ45 port. So any internet connectivity
required for installing packages needs to be handled either with an ethernet connec-
tion or downloaded externally, copied to the jetson and then built from source.

3.2.4 Lack of hardware for Junction testing

We did not have the hardware to test a master-slave directive for a junction but
we managed to make the jetson communicate with itself to make demonstration
possible. This however, does not portray the actual throughput of the system and
hence should be taken with a grain of salt.

Department of Electronics and Communication Engineering, Institute of Technology Nirma 13
University, Ahmedabad

Smart Traffic Control System

Chapter 4

Conclusions and Future Scope

4.1 Conclusion

We achieved most of what we set out to do: we built a dynamic feedback loop for
a traffic control system that helps solve most of the issues that the current system
has at the foundation. We can make the system more dynamic, which is a proof of
its customizabiliy and cost-effectiveness. It also requires minimum maintenance, as
most of the heavily lifting is done by software libraries that need only to be updated
on a regular basis. There were many issues encountered along the way and we solved
them as a team, working together for a common incentive. The throughput count can

be stated as follows:

| Particulars | Time |

Time for normal run-through(One junction) | 2.25s
Time for normal run-through(Four junctions) | 10.31s

Interrupt processing time 1.54s
Pipeline processing and latency 0.18s
Timing Allocation 0.013s

Table 4.1: Throughput and Latency Information for System

4.2 Future Scope

A lot can be improved and a lot can still be learnt from the system currently pro-
posed. A few have been listed for the convenience of the teams who want to carry
the torch forward.
1. We can try and understand NNPACK and port it to support YOLO on the jetson
in-code. This can reduce computation to 0.23s for the detection of density of

vehicles.

Department of Electronics and Communication Engineering, Institute of Technology Nirma 14
University, Ahmedabad

Smart Traffic Control System

2. We may attempt to come up with a better alternative to the GSM module that
also involves image processing. We may detect the flashing lights from ambu-
lances or law-enforcement vehicles to automatically fire an interrupt

3. We may try and reduce the load on the Jetson by making the JetPack OS run in
CLI. This will stop all processes pertaining to GUI of the OS and help push our
kernel up the OS priority queue.

4. We may remove embedded hardware from the equation and use it simply to
get frames from the camera and push the frame to the cloud where the model
resides.

5. Dynamic operation can be introduced to the interrupt system to support nearby
topology such as IT sectors that can contribute heavily to the influx of traffic
during a certain time of day. This can be done using Machine Learning

6. Interrupts can also be added to support accidents and mishaps on the road for
easy management.

Department of Electronics and Communication Engineering, Institute of Technology Nirma 15
University, Ahmedabad

Smart Traffic Control System

References

[1] Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement.”
arXiv preprint arXiv:1804.02767 (2018).

[2] Bradski, Gary, and Adrian Kaehler. ”OpenCV.” Dr. Dobb’s journal of software
tools 3 (2000).

[3] Alsing, Oscar. "Mobile Object Detection using TensorFlow Lite and Trans-
fer Learning.” (2018). [Online], Available http://www.diva-portal.org/
smash/get/diva2%$3A1242627/FULLTEXTO01.pdf

[4] Jetson Nano Developer Kit. (2020, February 25), [Online], Available, https:

//developer.nvidia.com/embedded/jetson-nano-developer-kit.

[5] SIM800. (n.d.), [Online], Available, https://simcom.ee/modules/
gsm-gprs/sim800/

[6] TM1637- Grove 4 Digit Display Module Datasheet, Pinout, Features
and Working. (n.d.), [Online], Available, https://componentsl101.com/
displays/tml637-grove-4-digit-display-module.

Department of Electronics and Communication Engineering, Institute of Technology Nirma 16
University, Ahmedabad

http://www.diva-portal.org/smash/get/diva2%3A1242627/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2%3A1242627/FULLTEXT01.pdf
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://simcom.ee/modules/gsm-gprs/sim800/
https://simcom.ee/modules/gsm-gprs/sim800/
https://components101.com/displays/tm1637-grove-4-digit-display-module
https://components101.com/displays/tm1637-grove-4-digit-display-module

	Introduction
	Motivation
	Proposed Hardware and Required Budget
	Hardware in-Depth
	NVIDIA Jetson Nano
	GSM Module SIM800A
	Timer Module TM1637

	Software in-Depth
	Jetson Nano Setup
	YOLO: You Only Look Once
	OpenCV
	TensorFlow

	System WorkFlow
	Flow Diagram
	Main Pipeline
	The Interrupt System

	Results and Inferences
	Results
	Issues Encountered
	Jetson's Capabilities to the test
	Jetson operational voltage
	Jetson lacks wifi module
	Lack of hardware for Junction testing

	Conclusions and Future Scope
	Conclusion
	Future Scope

	References

