NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY Electronics & Communication Engineering

OPEN ELECTIVE

Course Code	2ECOE04
Course Title	Fundamentals of Image and Video Processing

Course Outcomes (COs):

At the end of the course, the students will be able to

- 1. Apply spatial and frequency domain image filters for image enhancement.
- 2. Comprehend image degradation models for image restoration and color space transforms for color image processing.
- 3. Interpret and apply edge detection, image segmentation and representation for image recognition.
- 4. Demonstrate the use of image and video processing algorithms for different applications.

Syll	abus:	
------	-------	--

Teaching Hours:45

UNIT 1: Introduction	
Structure of the Human Eye, Light, Brightness adaption and discrimination, Pixels,	06
coordinate conventions, Imaging Geometry, Spatial Domain Filtering,	
UNIT II: Spatial and Frequency Domain Filtering	
Intensity transformations, contrast stretching, histogram equalization, Correlation and	07
convolution, Smoothing filters, sharpening filters, gradient and Laplacian, Frequency	07
domain filtering.	
UNIT III: Image and Video Compression Standards	
Basics of Discrete Cosine Transform, JPEG compression standard, H.261 video	05
compression standard.	00
UNIT IV: Image Restoration	
Basic Framework, Image degradation model, Noise characterization, Noise restoration	06
filters, Adaptive filters, and Estimation of Degradation functions, Restoration Techniques.	
UNIT V: Color Image Processing	
Color Fundamentals Color space transformation Models Pseudocolor Image Processing.	03
UNIT VI: Morphological Image Processing	
Basics of Structuring Element, Erosion, Dilation, Opening, Closing.	03
UNIT VII: Edge Detection and Image Segmentation	
Detection of Discontinuities, Edge detectors, Canny edge detector, Hough Transform, Pixel	08
and Region-Based Segmentation.	
UNIT IX: Object Recognition	
Representation, Boundary Descriptors, Regional Descriptors, Fourier descriptors.	07

Self-Study:

The self-study content will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Assignments:

The students will be given 8-10 programming/simulation/projects/assignments based on the syllabus as mentioned below:

- i. Image Enhancement Algorithms
- ii. Spatial Filtering Algorithms

- iii. Frequency Domain Filtering Algorithms
- iv. Image Restoration Algorithms
- v. Color Image Processing Algorithms
- vi. Image and Video compression Standards
- vii. Morphological Image Processing Methods
- viii. Image Segmentation Algorithms
- ix. Object Recognition algorithms
- x. Mini Project

Suggested Readings:

- 1. R. C. Gonzalez, R. E. Woods, Digital Image Processing, Addison Wesley
- 2. Sridhar, Digital Image Processing, Oxford University Press
- 3. Vipula Singh, Digital Image Processing with MATLAB and LabView, Elsevier
- 4. S. Jayaraman, S.Esakkirajan, T.Veerakumar, Digital Image Processing, TMH

L = Lecture, T = Tutorial, P = Practical, C = Credit