NIRMA UNIVERSITY

Institute:	Institute of Technology		
Name of	Master of Computer Application (2-Years Programme)		
Programme:			
Course Code:	3MCAD307		
Course Title:	Video Processing		
Course Type:	Departmental Elective		
Year of Introduction:	2021-22		

Credit Scheme

L	Т	Practical Component				C
		LPW	PW	W	S	
3	0	0	-	-	-	3

Course Learning Outcomes (CLO):

At the end of the course, students will be able to -

- 1. interpret videos as three-dimensional signal in the spatio-temporal domain
- 2. explain video quality enhancement techniques and methods
- 3. analyze various video compression techniques and their applicability
- 4. design video processing system and compare video processing tool

Syllabus:

Total Teaching hours: 45

Unit	Syllabus	Teaching
Unit-I	Introduction: Image definition, image processing, overview of applications, understanding of video, introduction to video processing, 3-D (spatio-temporal) sampling and filtering, motion perception	hours 04
Unit-II	Motion Detection and Estimation: Motion detection, 2-d motion estimation, 3-d motion estimation, global motion estimation, block matching, phase correlation, optical flow via regularization, map estimation of dense motion	06
Unit-III	Video Enhancement and Restoration: Spatiotemporal noise filtering, coding artefact reduction, super-resolution, scratch/dust removal, intensity flicker correction, scratch removal	08
Unit-IV	Video Segmentation: Scene change detection, spatiotemporal change detection, motion segmentation, video object segmentation	07
Unit-V	Motion Tracking in Video: Rigid object tracking (2d and 3d), articulated object tracking (2d and 3d)	05
Unit-VI	Basic Video Coding: Digital video signals and formats, video compression techniques, transform coding	08
Unit-VII	Video Compression Standards: MPEG-1 and MPEG-2, MPEG-4 Visual, H.264/AVC, HEVC, and standard for modern digital video	07

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings/ References:

- 1. Murat Tekalp, Digital Video Processing, Prentice Hall
- 2. Alan C. Bovik, The Essential Guide to Video processing, Elsevier Science
- 3. Oge Marques, Practical Image & Video Processing using MATLAB
- 4. Michael Parker, Suhel Dhanani, Digital Video Processing for Engineers: A Foundation for Embedded Systems Design
- 5. Yao Wang, Jorn Ostermann, Ya-Qin Zhang, Video Processing and Communications, Prentice Hall.
- 6. David Bull et al, Video Coding for Mobile Communications, Academic Press

Suggested List of Experiments:

-NA-

Suggested Case

-NA-

List: