NIRMA UNIVERSITY

Institute of Technology

School of Engineering

Bachelor of Technology - Civil Engineering

Semester- V

L	T	P	C
3	0	2	4

Course Code	2CL503
Course Name	Foundation Engineering

Course Outcomes:

At the end of the course, students will be able to -

- 1. evaluate the engineering properties of soils
- 2. analyze and design shallow foundation
- 3. analyze and design deep foundation
- assess stability of retaining structure & slopes and select appropriate ground improvement technique.

Syllabus: Teaching hours: 45

Unit 1: Soil Investigations Hours: 06

Methods, stages, planning, sampling, field tests, report.

Unit 2: Lateral Earth Pressures Hours: 07

Introduction, earth pressure analysis: submerged soil, level and inclined backfill, pressure calculations for retaining walls, stability analysis, base pressure.

Unit 3: Shallow Foundations Hours: 12

Types of foundation; Bearing capacity analysis: analytical methods, using penetration tests, factors affecting; Settlement: causes, analysis, factors affecting, control; Foundation: selection and design of shallow foundation.

Unit 4: Consolidation of Soils Hours: 04

One-dimensional theory, settlement analysis and experimental evaluation

Unit 5: Deep Foundation Hours: 07

Introduction to deep foundations, pile foundation: classification, load carrying capacity; Pile groups: efficiency and settlement, Pile load test.

Unit 6: Stability of Slopes Hours: 05

Slope Stability analysis: cohesive and non-cohesive soils, factor affecting stability and remedial measures, reinforced earth.

- 297 -

D:\Divy-Academics\NOTIFICATION\ACAD-COUN\38-Noti - AC-160620\- Noti - IT - 3(II)(A) - 7_BT - CL - TES_Syllb - V_VLdoc

Unit 7: Ground Improvement Techniques

Hours: 04

Introduction, need, methods: drainage, chemical and mechanical stabilization of soils. Liquefaction: phenomenon and remedial measures.

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. Das, B. M. Principles of Foundation Engineering, C.B.S Publishers
- 2. Gulhati, S. and Datta, M. Geotechnical Engineering, Tata McGraw Hill.
- 3. Bowles, J.E. Foundation Analysis and Design, McGraw Hill.
- 4. Coduto, D.P., Kitch, W.A. & Yeung, M.R. Foundation Design: Principles and Practices, Pearson
- 5. Terzaghi, K.V., Peck, R.B. & Mesri, G. Soil Mechanics in Engineering Practice, John Wiley
- 6. Arora, K.R. Soil Mechanics and Foundation Engineering, Standard Publication

L= Lecture, T= Tutorial, P= Practical, C= Credit

w.e.f. academic year 2020-21 and onwards