NIRMA UNIVERSITY

Institute of Technology B.Tech. in Electrical Engineering Semester - III

L	T	P	C
0	0	4	2

Course Code	2EE305	
Course Title	Analog and Digital Electronics Laboratory	

Course Learning Outcomes (CLO):

At the end of the course, students will be able to-

- 1. compare BJT and FET technology
- 2. suggest and choose application specific integrated circuit
- 3. verify the operations of various analog and digital electronic circuits

A minimum of 20 experiments /simulations based on following topics (but not limited to) will be conducted in this course:

- ➤ BJT operating characteristics
- > FET operating characteristics
- > Conventional amplifier design using single and dual supply
- > Differential amplifier and its characteristics
- > Operation amplifier parameters
- > Linear applications of operational amplifier
- Non linear applications of operational amplifier
- ➤ Positive feedback applications of operational amplifier
- > Instrumentation amplifiers
- > Function generator and voltage controlled oscillator
- ➤ Low drop out and linear regulators
- > Operational amplifier as error amplifier
- > Characteristics of different Gate ICs
- Characteristics of different Flipflop ICs
- ➤ Half adder, full adder, BCD adder
- ➤ Half subtractor, full subtractor
- ➤ Multiplerxers-demultiplexers
- > Encoders-decoders
- > Parity bit generators and parity checkers
- ➤ Different Code converters
- > Serial in serial out shift register
- ➤ Serial-in to Parallel-out (SIPO), Parallel-in to Parallel-out (PIPO), Parallel-in to Serial-out (PISO) shift register, bidirectional shift register
- > Synchronous up-down counters
- > Asynchronous up-down counters

Suggested Readings:

- 1. R. Boylestad and L. Nashelsky, Textbook of Electronics Devices & Circuit Theory, PHI Publication.
- 2. R. Gayakwad, Textbook of Operational Amplifiers and Linear Integrated Circuits, PHI Publication.
- 3. A. Mottershed, Textbook of Electronics Devices and Circuits An Introduction, PHI Publication.
- 4. Millman and Halkias, Textbook of Integrated Electronics, Mc Graw Hill.
- 5. Sergio Franko, Textbook of Designing with Operational Amplifiers and Analog Integrated Circuits, Mc Graw Hill.
- 6. R. Coughlin and Driscoll, Textbook of OpAmp & Linear Integrated Circuits, PHI Publications.
- 7. A. Anandkumar, Fundamentals of Digital Circuits, PHI publication
- 8. Malvino, Digital Computer Electronics, TMH publication
- 9. Morris Mano, Computer Logic Design, PHI publication
- 10. Tocci, Widmer and Moss, Digital Systems: Principles and Application, Pearson.
- 11. Various IEEE/IET Papers & Various Product Literature

L = Lecture, T = Tutorial, P = Practical, C = Credit

W.e.f. academic year 2019-20 and onwards