NIRMA UNIVERSITY

Institute:	Institute of Technology			
Name of Programme:	B.Tech. in Electrical Engineering			
Semester:	VII			
Course Code:	2EEDE60			
Course Title:	Condition Monitoring of Electrical Machines			
Course Type:	: (☐ Core/☐ Value Added Course / √ Department Elective/			
	☐ Institute Elective/☐ University Elective/☐ Open Elective/☐			
	☐ Any other)			
Year of Introduction:	2021 – 22			

Credit Scheme

L	T	Practical component				C
		LPW	PW	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to-

- 1. identify the need and importance of condition monitoring of electrical machine
- 2. identify the type of fault in electrical machine
- 3. select appropriate non-destructive diagnostic technique to diagnose the electrical machine
- 4. infer the results of non-destructive tests and take necessary precautions

Syllabus: Total Teaching hours: 30

Unit	Syllabus	Teaching hours
Unit-I	Maintenance and condition monitoring	04
	Importance and necessity of maintenance, different maintenance	
	strategies like breakdown maintenance, planned maintenance,	
	preventive maintenance and condition based maintenance of	
	transformer, induction motor and alternators, insulation failure	
	modes, concept of condition monitoring of electrical equipment.	
Unit-II	Various test techniques	10
	Thermal test, acoustic test, vibration analysis, chemical analysis:	
	dissolved gas analysis, Furan analysis, degree of polymerisation,	
	electric analysis: current signature analysis, insulation resistance	
	test, loss angle test, partial discharge test, impulse test, frequency	
	response analysis.	
Unit-III	Condition monitoring of Transformer	08
	Construction and operation of transformer, causes of failure in	
	transformer, winding faults: winding to ground failure, failure	
	across large portion of winding, inter winding breakdown, failure	
	between small portion of winding, diagnostic test techniques for	
	transformer, remaining life estimation, various case studies.	
Unit-IV	Condition Monitoring of Rotating Electrical Machines	08
	Construction, operation and failure modes of electrical machines,	
	structure of electrical machines and their types, machine	
	specification and failure modes, failure sequence and effect on	
	monitoring, typical root causes and failure modes, induction motor	

faults, diagnostic techniques for rotating electrical machines, various case studies.

Self-Study:

The self study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

Laboratory Work:

This shall consist of at least 10 laboratory experiments / simulations based on the syllabus.

Suggested Readings/ References:

- 1. S. Chakravorti, D. Dey, B. Chatterjee, Recent trends in the condition monitoring of transformers, Springer
- 2. H. Toliyat, S. Nandi, S. Choi, H. Meshgin-Kelk, Electric machines: Modelling, condition monitoring and fault diagnosis, CRC press
- 3. G. Stone, E. Boulter, I. Culbert, H. Dhirani, Electrical insulation for rotating machines,
- 4. IEEE Press
- 5. W. Thomson, I. Culbert, Current signature analysis for condition monitoring of cage induction motors, IEEE press Wiley.
- 6. Recent literature in renowned journals, international standards and white papers.

Suggested List of Experiments:

- 1. To study and generation of impulse voltage using impulse generator.
- 2. To perform testing and offer diagnosis of transformer using frequency response analysis.
- 3. To simulate long transmission line network and understand travelling wave using Bewley's lattice diagram.
- 4. To perform diagnostic testing of induction machine using current signature analysis.
- 5. A case study on various mechanical faults in electrical machines.
- 6. A case study on diagnostic testing of induction machine using vibration analysis.
- 7. A case study / simulation approach to determine machine transfer function from frequency response.
- 8. A case study on statistical data usage / interpretation for diagnosis of electrical machines.
- 9. A case study on partial discharge test in electrical machines.
- 10. A case study based on chemical analysis test of transformer oil.

L = Lecture, T = Tutorial, P = Practical, C = Credit

w.e.f. academic year 2021-22 and onwards