NIRMA UNIVERSITY

SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY

M.Tech. in Electronics & Communication Engineering (VLSI Design)

M.Tech. Semester - II Department Elective II

L	T	P	C
3	-	-	3

Course Code	3EC12D204
Course Title	VLSI System on Chip

Course Outcomes (COs):

At the end of the course, students will be able to -

- 1. Analyze modeling styles for design of system on chip.
- 2. Design data path architectures and solve intra-chip communication issues for given system on chip.
- 3. Apply partitioning and floor planning algorithms for effective system on chip design.
- 4. Utilize System Verilog, TLM, and System C for modeling and testing of system on chip.

Syllabus: Teaching		Hours:	
	UNIT I: Introduction	05	
	System on Chip technology challenges, System on a Chip (SoC) components, SoC design		
	methodology.		
	UNIT II: SoC Architecture	07	
	Parameterized SoC, SoC peripheral cores, SoC and Interconnect Centric Architectures		
	UNIT III: System Level Design	09	
	System level design representations and modelling languages, Target architecture models,		
	Intra-chip communication, Graph partitioning algorithms, Floor planning algorithms, Task		
	time measurement		
	UNIT IV: Synthesis and Timing Analysis	09	
	Interconnect latency modelling, Back annotation of lower level timing to high-level models,		
	Synthesis of SoC components.		
	UNIT V: SoC Verification and Testing	15	
	System level verification, Block level verification and Hardware/Software Co-verification		
	using System C, TLM, System Verilog, Emulation, Physical Verification.		

Self-Study:

The self-study contents will be declared at the commencement of Semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings:

- 1. Wayone Wolf, Modern VLSI Design: SOC Design, Pearson Education.
- 2. Prakash Rashnikar, Peter Paterson, Lenna Singh, System-on-a-Chip, Verification Methodology & Techniques, Kluwer Academic Publishers.
- 3. Alberto Sangiovanni Vincentelli, Surviving the SOC Revolution: A Guide to Platform based Design, Kluwer Academic Publishers.
- 4. J. Bhasker, A System C Primer, Star Galaxy.

L = Lecture, T = Tutorial, P = Practical, C = Credit