NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M. Tech. in Electronics and Communication Engineering (Embedded System) M.Tech. Semester - II

L	Τ	Р	С
3	-	2	4

Course Code	3EC3209
Course Title	Embedded Operating System

Course Outcomes (COs):

At the end of the course, students will be able to -

- 1. Comprehend concepts of processes, threads, tasks, multitasking, multithreading in context of real time systems.
- 2. Decide for a given an embedded system whether an operating system will be required for its design.
- 3. Evaluate the performance of Rate-Monotonic Scheduling and Earliest-Deadline First Scheduling policies for a given real time system for task scheduling, turnaround time, waiting time, average waiting time of the processes.
- 4. Analyze the performance of RTx51Tiny and Micro-C Operating System in a given real time system for effects of scheduling, response-time, interrupt latency, memory management, process scalability, inter process communication and resource sharing.

Syllabus: Tea	
UNIT I: Introduction	10
Overview of OS, Multithread systems, Processes and Threads, Context switching, Multitasking,	
Cooperative Multitasking, Structure of Pre-emptive operating systems, Operating system function, Timing requirements on processes, Features of an Operating System	
UNIT II: Real Time Task Scheduling	05
Process state and scheduling, Clock driven and Event driven scheduling, Rate-Monotonic	
Scheduling, Earliest-Deadline First Scheduling, Fault-Tolerant Scheduling	
UNIT III: Inter-Process Communication	03
Signals, Shared Memory Communication, Message-based Communication	
UNIT IV: Real-time Memory Management	04
Process stack management, Dynamic allocation, I/O operations, Synchronous and Asynchronous	
I/O, Interrupt handling, Device drivers	
UNIT V: Handling Resource Sharing and Dependencies among Real Time Tasks	10
Resource sharing protocols, Priority inheritance protocol, Highest locker protocol, priority ceiling	
protocol, Priority inversion, Issues in resource sharing protocols	
UNIT VI: Features of RTOS, POSIX, Case Studies	08
μCOS, RTx51, Android OS for embedded systems, Building RTOS/EoS image for target hardware	
Benchmarking of RTOS	. –
UNIT VII: Evaluating and Optimizing Operating System Performance	05
Effects of scheduling, Response-time calculation, Interrupt latency, Time-loading, Memory loading, Power optimization Strategies for processes, Advanced configuration and power interface	

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. Wayne Wolf, Computers as Components Principles of Embedded Computing System Design, Morgan Kaufman
- 2. Rajib Mall, Real Times Systems Theory and Practice, Pearson Education
- 3. Peter Marvedel, Embedded System Design, Springer
- 4. Krisha and Shin, Real-Time Systems, McGraw Hill
- 5. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Concepts, Wiley Publications

L = Lecture, T = Tutorial, P = Practical, C = Credit