NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY

M. Tech. in Electronics and Communication Engineering (Embedded System) M.Tech. Semester - II <u>Department Elective II</u>

L	T	P	C
3	-	-	3

Course Code	3EC32D201
Course Title	Sensor Networks

Course Outcomes (COs):

At the end of the course, students will be able to -

- 1. Design a wireless sensor network for given sensor data using microcontroller, transceiver and operating system.
- 2. Evaluate the performance of schedule based and random Medium Access Control protocols for a given wireless sensor networks for power consumption, fairness, channel utilization and control packet overhead.
- 3. Analyze gossiping and agent-based unicast forwarding, energy-efficient unicast, broadcast/ multicast techniques and Geographic routing protocol for power consumption, scalability and latency parameters.
- 4. Evaluate the performance of transport control protocols for a given wireless sensor network for congestion detection and avoidance, reliability and control packet overhead parameters.

Syllabus: Teaching Hours:	
UNIT I: Introduction 04	
Layered operation, Protocol Suites and Standards, OSI Model and TCP/IP Protocol Suite,	
Adhoc Networks, Comparison of Adhoc and Sensor Networks, Applications of Sensor	
Networks Challenges and Hurdles in Sensor network design.	
UNIT II: Single-node Architecture 05	
Hardware components, Energy consumption of sensor nodes, Operating systems and	
execution environments, Physical layer and transceiver design considerations in Wireless	
Sensor Networks.	
UNIT III: Network Architecture 06	
Sensor network scenarios - single hop and multi hop, network, multiple sink/sources,	
Optimization goals and figures of merit - Quality of Service (QoS), energy efficiency,	
scalability, robustness, design principles for Wireless Sensor Networks, Service interfaces of	
Wireless Sensor Networks, Gateway concepts.	
UNIT IV: Time Synchronization, Localization and Positioning 06	
Time synchronization problem, protocols based on sender/receiver synchronization,	
Protocols based on receiver/receiver synchronization, properties of localization and	
positioning procedures, Localization approaches- proximity, trilateration and triangulation,	
Single-hop and Multi hop localization.	
UNIT V: Medium Access Control 06	
Fundamentals of MAC Protocols, types of MAC protocols - Schedule-Based and Random	
Access- Based Protocols, Sensor-MAC, Zebra-MAC.	
UNIT VI: Routing 06	
Problems in routing, Gossiping and agent-based unicast forwarding, Energy-efficient unicast,	
broadcast and multicast techniques, Geographic routing.	
UNIT VII: Transport Layer and Quality of Service 06	
Coverage and deployment, Reliable data transport, Single packet delivery, Block delivery,	
Congestion control and rate control, Congestion Detection and Avoidance protocol, Event-to-	
Sink Reliable Transport protocol.	

Embedded operating systems, Programming paradigms and application programming interfaces, Structure of operating system and protocol stack, Case Study: TinyOS

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings:

- 1. Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor Networks, John Wiley.
- 2. Kazem Sohraby, Daniel Minoli, Taieb Znati, Wireless Sensor Networks: Technology, Protocols, and Applications, John Wiley.
- 3. Ananthram Swami, Qing Zhao, Yao-Win Hong, Lang Tong, Wireless Sensor Networks, Signal Processing and Communications Perspectives, John Wiley.
- 4. C. S. Raghavendra, Krishna M. Sivalingam, Taieb Znati, Wireless Sensor Networks, Kluwer Academic.
- 5. Bhaskar Krishnamachari, Networking Wireless Sensors, Cambridge University Press.

L = Lecture, T = Tutorial, P = Practical, C = Credit