NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M. Tech. in Electronics and Communication Engineering (Embedded System) M.Tech. Semester - II <u>Department Elective II</u> <u>L T P C</u> <u>3 - - 3</u>

		-
Course Code	3EC32D204	
Course Title	Cyber Physical Systems	

Course Outcomes (COs):

At the end of the course, students will be able to -

- 1. Address challenges in implementing a cyber-physical system from a computational perspective.
- 2. Integrate real valued and dense time real time systems with software based discrete automated control.
- 3. Design and validate problems for Cyber Physical Systems using formal methods, safety assurance and security aspects.

Syllabus: Teachin		
UNIT I: Introduction to Cyber-Physical Systems	05	
Cyber-Physical Systems (CPS) in the real world, Basic principles of design and validation of		
CPS, Industry 4.0, AutoSAR, IIOT implications, Building Automation, Medical CPS		
UNIT II: CPS - Platform components	06	
CPS HW platforms - Processors, Sensors, Actuators, CPS Network – Wireless Hart, CAN,		
Automotive Ethernet, CPS Sw stack - RTOS, Scheduling Real Time control tasks		
UNIT III: Principles of Automated Control Design		
Basic control theory, Dynamical Systems and Stability, Controller Design Techniques,		
Stability Analysis: CLFs, MLFs, stability under slow switching, Performance under Packet		
drop and Noise, Tutorial: MATLAB toolboxes - Simulink, Stateflow		
UNIT IV: CPS Implementation	07	
Features, software components, Mapping software components to ECUs, CPS Performance		
Analysis - effect of scheduling, bus latency, sense and actuation faults on control		
performance, network congestion, Control, Bus and Network Scheduling using True time		
UNIT V: Formal Methods for Safety Assurance of Cyber-Physical Systems	07	
Advanced Automata based modeling and analysis, Basic introduction and examples, Timed		
and Hybrid Automata Formal Analysis, Flow pipe construction, reachability analysis,		
Analysis of CPS Software, Weakest Pre-conditions, Hybrid Automata Modeling, Flow pipe		
construction using SpaceX and Phaver tools CPS SW Verification, Frama-C, CBMC		
UNIT VI: Secure Deployment of CPS	07	
Attack models, Secure Task mapping and Partitioning, State estimation for attack detection,		
Case study - Vehicle ABS hacking, Power Distribution, and Attacks on Smart Grids		
UNIT VII: CPS Case studies and Tutorials	05	
Automotive : SW controllers for ABS, ACC, Lane Departure Warning, Suspension Control,		
Healthcare : Artificial Pancreas/Infusion Pump/Pacemaker, Green Buildings : automated lighting,		
AC control		

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings:

- 1. E. A. Lee, Sanjit Seshia, Introduction to Embedded Systems A Cyber–Physical Systems Approach , MIT Press
- 2. Rajeev Alur , Principles of Cyber-Physical Systems, MIT Press

L = Lecture, T = Tutorial, P = Practical, C = Credit