NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M. Tech. in Electronics and Communication Engineering (Embedded System) M.Tech. Semester - II <u>Department Elective III</u>

L	Т	Р	С
2	-	2	3

Course Code	3EC32D304
Course Title	Testing and Verification of Embedded Systems

Course Outcomes (COs):

At the end of the course, students will be able to -

- 1. Propose the verification architecture of given Embedded Systems.
- 2. Apply the concepts of hardware software co design from testing and verification point of view.
- 3. Design SoC test wrapper for embedded systems.
- 4. Perform testing on given embedded software components.

Syllabus: Teaching H	lours:
UNIT I: Introduction	02
Need of Testing, Different Roles of Testing, Cost and product considerations with reference	
to Testing	
UNIT II: Functional Verification Methods and Tools	10
Concept, Test Bench Architecture, Test Bench Generation, Monitors, Checkers, Scoreboard,	
Verification Language, Simulation tools, Emulation, Functional and Code Coverage,	
Assertion based Verification	
UNIT III: Formal Verification Methods	04
Binary Decision Diagram, Equivalence Checking, Model Checking	
UNIT IV: Challenges in Testing and Verification of Embedded Systems	05
Design-for-Test, Built in Self-Test, Design-for-Manufacturing, Design-for-Upgrades, Over	
the Air Interface, Embedded System Test Jig Design, Testing of Asynchronous Systems	
UNIT V: SoC Testing	05
Introduction to IP Testing-Memory Testing and FPGA Testing, Core Based Testing and Test	
Wrapper, SoC and Embedded System Testing	
UNIT VI: Embedded Software Testing	04
Criteria for Embedded Software Testing, Methods and Tools of Software Testing, Validation,	
Unit Level Testing, Component Testing, Integrated Testing, System Level Testing	

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. Malvin A Breuer, Diagnosis and Reliable Design of Digital System, Computer Science Press
- 2. Laung-TerngWang, VLSI Test Principals and Architecture:, Morgan Kaufman
- 3. Bart Broekman, Edwi Notenboom, Testing Embedded Software, Pearson Education
- 4. Daniel W lewis, Fundamentals of Embedded Software: where C and Assembly meet, Prentice Hall
- 5. Michael L. Bushnell and Vishwani D. Agrawal Essential of Electronic Testing for Digital, Memory and Mixed Signal VLSI Circuits, Kluwer Academic Publishers

L = Lecture, T = Tutorial, P = Practical, C = Credit