NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY

M. Tech. in Electronics and Communication Engineering (Embedded System) M.Tech. Semester - II Department Elective III

L	T	P	C
2	-	2	3

05

05

05

Course Code	3EC32D306	
Course Title	Machine Learning for Embedded Systems	

Course Outcomes (COs):

At the end of the course, students will be able to -

- 1. Analyze and compare machine learning approaches as supervised, unsupervised, regression and ensemble algorithms.
- 2. Demonstrate the implementation of machine learning algorithms on embedded platform of GPU, CPU and FPGA and analyze the issues of computational complexity, memory and speed.
- 3. Apply machine learning concepts of Neural Network and Deep Learning for the given application.

Syllabus:

Teaching Hours:

UNIT I: Machine Learning Introduction Concept of learning, designing a learning system, perspective and issues in machine learning, classification, regression, clustering, supervised and unsupervised learning, applications of machine learning and ML in embedded systems UNIT II: Regression Techniques Regression, Linear models for regression, Gradient Descent and Normal Equations Method, Multiple Linear Regression, Evaluation Measures for Regression Analysis UNIT III: Supervised Learning 05

Decision Trees, Bayesian Decision Theory, Parametric Methods, Dimensionality Reduction algorithms, kernel methods and reinforcement learning

UNIT IV: Ensemble Learning Techniques for generating base classifiers, techniques for combining classifiers, bootstrap

Techniques for generating base classifiers, techniques for combining classifiers, bootstrap, bagging, random forest, AdaBoost

UNIT V: Unsupervised LearningClustering, k- means Algorithm, Linear models for classification, Expectation Maximization, Mixture of Gaussians

UNIT VI: Neural NetworksIntroduction, Biological motivation, NN representation and learning, Perceptron, multi-layer networks and back propagation, introduction to Convolutional Neural Networks and Deep Learning

UNIT VII: Machine Learning Hardware Machine Learning Hardware Tensor Flow TPU, machine learning algorithm implementation

framework (open-source software libraries - Caffe, Torch, Theano), machine learning algorithms on hardware like GPU, CPU and FPGA.

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- Mitchell, T. M., Machine Learning, McGraw-Hill.
 Bishop, C., Pattern Recognition and Machine Learning, Springer.
- 3. Alpaydin, E., Introduction to Machine Learning, MIT Press.
- 4. Duda, R.O. and Hart, P.E., Pattern Classification and Scene Analysis, John Wiley.

L = Lecture, T = Tutorial, P = Practical, C = Credit