NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY B.Tech. Electronics & Communication Engineering

Semester - V

L	Τ	Р	С
3	-	2	4

Course Code	2EC501
Course Title	VLSI Design

Course Outcomes (COs):

At the end of the course, the students will be able to

- 1. Analyze the digital VLSI circuits working with resistive load, NMOS, PMOS and CMOS load conditions under linear and saturation region.
- 2. Evaluate digital VLSI circuits for speed, area, power, cost and output voltage requirements.
- 3. Design combinational, sequential and dynamic logic circuits using CMOS for given specifications.
- 4. Simulate and optimize digital VLSI circuits and layouts using EDA Tools.

Syllabus:	Teaching Hours: 45
UNIT I : Introduction of VLSI	02
Historical perspective, Objective and organization, Overvie	w of VLSI Design Methodologies,
VLSI design flow, Design Hierarchy, Concept of Regulari	ty, Modularity and Locality, VLSI
design Styles, Design Quality, Packaging Technology, CAD	Technology.
UNIT II: MOS Basics Scaling and Effects of Scaling	on MOS 07
MOSFET Basics, V-I Characteristics, MOSFET scaling,	Small-geometry effects, MOSFET
capacitances	
UNIT III: MOS Inverter Static Characteristics	08
Introduction, Resistive load Inverter, Inverter with n-ty	pe MOSFET load (Enhancement
& Depletion type MOSFET load), CMOS Inverter.	• ×
UNIT IV: MOS Inverters Switching Characteristics	and Interconnect Effects 07
Introduction, Delay-time definitions, Calculation of De	elay times, Inverter design with
delay constraints, Estimation of Interconnect Parasitic, C	Calculation of interconnect delay,
Switching Power Dissipation of CMOS Inverters.	
UNIT V: Combinational MOS Logic Circuits	08
Introduction, MOS logic circuits with Depletion NMOS Log	ads, CMOS logic circuits, Complex
logic circuits, CMOS Transmission Gates (TGs).	
UNIT VI: Sequential MOS Logic Circuits	03
Introduction, Behaviour of Bistable elements, SR latch of	circuit, Clocked latch & Flip-flop
circuits, CMOS D-latch & Edge-triggered flip-flop.	
UNIT VII: Dynamic Logic Circuits	07
Introduction, Basic Principles of pass transistor	circuits, Voltage Bootstrapping,
Synchronous Dynamic Circuit Techniques, CMOS Dynamic	Circuit Techniques.
UNIT VIII: Advances in VLSI Design	. 03
Challenges with MOS, MOS Alternate Technologies, Low P	ower Technology

Self-Study:

The self-study content will be declared at the commencement of the semester. Around 10% of the question will be asked from self-study content.

Laboratory Work:

Laboratory work will be based on the above syllabus with a minimum of 10 experiments to be incorporated.

Suggested Readings:

- 1. Sung-Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits Analysis and Design, TATA McGraw-Hill
- 2. Pucknell and Eshraghian, Basic VLSI Design, PHI
- 3. Amar Mukerji, Introduction to nMOS and CMOS VLSI System Design, Prentice Hall
- 4. Neil H. E. Weste, David Money Harris, CMOS VLSI Design: A Circuits and Systems Perspective, Addison Wesley