NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY B.Tech. Electronics & Communication Engineering Semester - V

Department Elective I

L	Τ	Р	С
3	I	2	4

02

Teaching Hours:45

Course Code	2ECDE51
Course Title	Image Processing

Course Outcomes (COs):

At the end of the course, the students will be able to

- 1. Apply spatial and frequency domain image filters for Image enhancement.
- 2. Comprehend image degradation models for image restoration and colour transforms.
- 3. Apply morphological operations for image morphing applications.
- 4. Interpret and apply edge detection, image segmentation and representation for image recognition.

Syllabus:

UNIT I: Introduction

Structure of the Human Eye, Light, Brightness adaption and discrimination, Pixels, coordinate conventions, Imaging Geometry, Spatial Domain Filtering, image compression techniques.

UNIT II: Spatial Domain Filtering

Intensity transformations, contrast stretching, histogram equalization, Correlation and convolution, Smoothing filters, sharpening filters, gradient and Laplacian, 2D sampling, 2D convolution and correlation.

UNIT III: Filtering in the Frequency Domain

2D FT transforms and its properties, Discrete Cosine Transform, Frequency domain 05 filtering.

UNIT IV: Image Restoration

UNIT V. Color Incore December -	
filters, Adaptive filters, Estimation of Degradation functions, Restoration Techniques	
Basic Framework, Image degradation model, Noise characterization, Noise restor	ation 06

UNIT V: Color Image Processing

Color Fundamentals Color Models Pseudocolor Image Processing Basics of Full-Color Image Processing Color Transformations Smoothing and Sharpening Color Segmentation in HSI Color Space Segmentation in RGB Vector Space.

UNIT VI: Morphological Image Processing

Basics of Structuring Element, Erosion, Dilation, Opening, Closing, Hit-or-Miss Transform, Boundary Detection, Hole filling, convex hull, thinning, thickening, skeletons, pruning.

UNIT VII: Edge Detection and Image Segmentation

Detection of Discontinuities, Edge detectors, Canny edge detector, Hough Transform, **08** Pixel and Region-Based Segmentation

UNIT IX: Object Recognition

Representation, Boundary Descriptors, Regional Descriptors, Fourier descriptors, Case 07 studies and applications

Self-Study:

The self-study content will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Laboratory Work:

Laboratory work will be based on the above syllabus with a minimum of 10 experiments to be incorporated.

Suggested Readings:

- 1. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison Wesley
- 2. A.K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall
- 3. S. Sridhar, Digital Image Processing, Oxford University Press
- 4. Vipula Singh, Digital Image Processing with MATLAB and Lab View, Elsevier
- 5. S. Jayaraman, S.Esakkirajan, T. Veerakumar, Digital Image Processing, TMH

L = Lecture, T = Tutorial, P = Practical, C = Credit