NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY B.Tech. Electronics & Communication Engineering

Semester – VI

L	Τ	Р	С
2	-	2	3

Course Code	2EC602
Course Name	Machine Learning

Course Outcomes (COs):

At the end of the course, the students will be able to

- 1. Apply regression techniques for machine learning examples.
- 2. Comprehend supervised and unsupervised machine learning techniques.
- 3. Apply the neural network and dimensionality reduction techniques for machine learning applications.
- 4. Design and implement machine learning algorithms to solve real-world application problems.

Syllabus: Teaching Hours	s:30
UNIT I: Introduction	02
Motivation and Applications, Basics of Supervised and Unsupervised Learning.	
UNIT II: Regression Techniques	05
Basic concepts and applications of Regression, Simple Linear & Multiple Regression, Gradient	
Descent, Hyper-parameters tuning, Evaluation Measures for Regression Techniques.	
UNIT III: Classification Techniques	06
Naïve Bayes Classification, K-Nearest Neighbors, Classification Trees, Support Vector Machines,	
Evaluation Measures for Classification Techniques.	
UNIT IV: Neural Networks	09
Biological Neurons and Biological Neural Networks, Perceptron Learning, Activation Functions,	
Multilayer Perceptron, Back-propagation Neural Networks, Convolution Neural Network.	
UNIT V: Dimensionality Reduction & Clustering	03
PCA, k-means Clustering.	
UNIT VI: Reinforcement Learning	02
Basics concepts of reinforcement learning and applications.	
UNIT VII: Applications and Case Studies	03
Case studies on deep learning and RNN.	

Self-Study:

The self-study content will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Laboratory Work:

Laboratory work will be based on the above syllabus with a minimum of 10 experiments to be incorporated.

Suggested Readings:

- 1. Tom Mitchell, Machine Learning, TMH
- 2. C. Bishop, Pattern Recognition and Machine Learning, Springer
- 3. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification and Scene Analysis, Wiley
- 4. Simon Rogers, Mark Girolami, First Course in Machine Learning, CRC Press

5. Athem Ealpaydin, Introduction to Machine Learning, PHI

L = Lecture, T = Tutorial, P = Practical, C = Credit