NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY B.Tech. Electronics & Communication Engineering Semester - VI Department Elective II

L	Τ	Р	С
3	-	-	3

Course Code	2ECDE01
Course Title	Speech and Audio Signal Processing

Course Outcomes (COs):

At the end of the course, the students will be able to

- 1. Comprehend the speech production and hearing models.
- 2. Design and apply models for speech and audio signal processing.
- 3. Apply speech coding, speech enhancement and speaker recognition algorithms for speech and audio processing.
- 4. Implement the methods for speech enhancement and speech coding for speech signals.

Syllabus:

UNIT 1: Introduction

Introduction, Anatomy and physiology of speech production, categorization of speech sounds, **06** Prosody, Parameters of Speech: Pitch and Formants.

UNIT II: Analysis and Synthesis of Speech and Audio signals

	•		•	1		0				
Spectral	Analysis	Model	s, Linea	r Predictiv	e Coding	Model fo	or Spee	ch Recogniti	ion, The	10
autocorrelation method, The covariance method, Short-Time Fourier Transform Analysis and							12			
Synthesis	s, Short-T	Гime I	Fourier	Transform	Magnitude	e, Filter	Bank	Summation	method,	
Overlap-	Add metho	od.								
UNIT III · Frequency Domain Pitch Estimation										

Unit in. Frequency Domain Fitch Estimation	00
A correlation-based Pitch Estimator, Pitch Estimation based on Comb Filter, Pitch Estimation	08
based on a Harmonic Sine wave Model.	
UNIT IV: Speech Coding	06
Vector Quantization, Frequency-Domain Coding, Model-based Coding.	
UNIT V: Enhancement of Speech and Audio Signals	07

Spectral subtraction, Cepstral Mean Subtraction, Wiener Filtering.

UNIT VI: Speaker Recognition

Spectral Features required for Speaker Recognition, Minimum Distance classifier, Gaussian Mixture Model.

Self-Study:

The self-study content will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Assignments:

The students will be given 8- 10 programming/simulation/ projects assignments based on the above syllabus as follows:

- i. Analysis and Synthesis of Speech and Audio signals
- ii. LPC Model for Speech Signal
- iii. Pitch Estimation Algorithm
- iv. Speaker Recognition Algorithm
- v. STFT Analysis of Speech and Audio Signals
- vi. Speech and Audio Compression Algorithm
- vii. Enhancement of Audio and Speech signal
- viii. Speech Coding Algorithm

als.

Teaching Hours:45

- ix. Speech Recognition Algorithm
- x. Adaptive filtering for Speech and Audio Signal

Suggested Readings:

- 1. T.F. Quartieri, Discrete-Time Speech Signal Processing: Principles and Practice, Prentice Hall
- 2. L.R.Rabiner, R.W.Schafer, Theory and Applications of Digital Speech Processing, Prentice Hall
- 3. B. Gold, N. Morgan, D. Ellis, Speech and Audio Signal Processing: Processing and Perception of Speech and Music, Wiley-Blackwell
- 4. T. Dutoit, F. Marqués, L.R. Rabiner, Applied signal processing: a MATLAB-based Proof of Concept, Springer
- 5. Ian Vince Mcloughlin. Speech and Audio Processing: A MATLAB-based Approach, Cambridge University Press

L = Lecture, T = Tutorial, P = Practical, C = Credit