NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY B.Tech. Electronics & Communication Engineering Semester - VI Department Elective II

L	Τ	Р	С
3	I	I	3

Course Code	2ECDE02
Course Title	Satellite Communication

Course Outcomes (COs):

At the end of the course, the students will be able to

- 1. Comprehend the principle, operation and working of various subsystems of satellite as well as the earth station.
- 2. Analyze and design a satellite link.
- 3. Apply communication techniques in satellite applications.
- 4. Appreciate the role of satellite in a wide spectrum of applications such as navigation, remote sensing, and communication.

Syllabus: Teaching Ho	
UNIT 1: Orbital Mechanics and Launching	07
Kepler's law, perturbations, orbital effects, type of orbits, launching of satellite, launch	-
vehicle technology	
UNIT II: Satellite Sub Systems	
Attitude & orbit control, thermal control, power supply, propulsion, telemetry, tracking &	07
command, transponder, antennas	
UNIT III: Satellite Link Design	
Free space path loss, G/T ratio, equivalent noise temperature, G/T ratio, link budget, design	08
for uplink, design for downlink, Inter satellite links	
UNIT IV: Communication Techniques and Earth Station Technologies	
Hybrid Modulation techniques, multiple Access techniques, Earth stations Configuration,	09
classes, performance criteria, subsystems, antennas	
UNIT V: Applications of Satellite Communication	
Telecom and data communication, Satellite navigation systems (GPS), Satellite broadcasting	10
systems (DTH, world space radio), Very Small Aperture Terminal (VSAT) systems, Mobile	10
satellite systems, Remote sensing satellite systems	
UNIT VI: Future Trends in Satellite Communication	
High altitude platforms, high throughput satellite systems, Optical inter-satellite links, Open	04
standards – DVBs	

Self-Study:

The self-study content will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Assignments:

The students will be given 8-10 programming/simulation/projects assignments based on the above syllabus as mentioned below

- i. Program to determine orbital parameters
- ii. Satellite Link Design Calculator
- iii. Simulation modulation and error control coding for satellite communication
- iv. Review of deep space mission satellite payload
- v. Comparative study of satellite launchers and space shuttles
- vi. Project-based on location determination/ tracking using GPS module

- vii. Study of NaVIC receiver
- viii. Project-based on IRNSS data utilization

Suggested Readings:

- 1. T. Pratt, Satellite Communication, Wiley
- 2. Dennis Roddy, Satellite Communication, Wiley
- 3. A. K. Maini, Satellite Communication, Wiley
- 4. Bruce R. Elbert, Introduction to Satellite Communication, Artech House
- 5. Bruce R. Elbert, Satellite Communication Applications, Artech House

L = Lecture, T = Tutorial, P = Practical, C = Credit