
NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY B.Tech. Electronics & Communication Engineering Semester - VI Department Elective II

Course Outcomes (COs):

At the end of the course, students will be able to

- 1. Analyze the given analog circuit using a large signal, small signal and high-frequency models and evaluate performance parameters.
- 2. Design an analog signal conditioning circuit using the operational amplifier for the given specific application.
- 3. Apply noise analysis for analog CMOS circuits and evaluate input signal noise and output signal noise.
- 4. Design an amplifier using switching capacitors circuits for the given specifications.

Syllabus: Teaching Hour	·s:45
UNIT I: Introduction Analog Integrated circuit design, Analog signal processing, examples of Analog VLSI mixed-signal circuit design.	03
UNIT II: CMOS Device Modelling Simple MOS large-signal model, a small-signal model for the MOS transistor, sub-threshold MOS model.	04
UNIT III: Noise Analysis	06
Noise in single-stage amplifiers, Noise in Differential amplifiers. UNIT IV: Analog CMOS Sub-Circuits MOS switch, MOS diode/Active resistor, current sinks and sources, Voltage references, current mirrors.	08
UNIT V: CMOS Amplifiers	08
Inverters, differential amplifiers, cascade amplifiers, current amplifiers. UNIT VI: CMOS Operational Amplifiers Design of CMOS OPAMPs, compensation of OPAMPs, Design of a two-stage opamp, measurement parameters of an OPAMP.	06
UNIT VII: Comparators	05
Characterization of a comparator, Two-stage open-loop comparator.	
UNIT VIII: Switched Capacitor Circuits Basic concept, switched capacitor amplifiers, switched-capacitor integrators, PLL.	05

Self-Study:

The self-study content will be declared at the commencement of the semester. Around 10% of the question will be asked from self-study content.

Assignments:

The students will be given 8-10 programming/simulation assignments based on the above syllabus as mentioned below

- i. Design different types of current mirrors.
- ii. Design and evaluate the performance of a CMOS Differential amplifier using
- iii. Design and compare the performance of different bandgap voltage references
- iv. Design and verify the specifications of CMOS two-stage operational Amplifier

- v. Design and simulate CMOS Comparator using 0.18µm Technology model
- vi. Design and simulate Sense Amplifier using $0.18 \mu m$ Technology model
- vii. Design and simulate Flash type ADC using 0.18µm Technology model
- viii. Mini Project

Suggested Readings:

- 1. Philip E. Allen, Douglas R. Holberg, CMOS Analog Circuit Design, Oxford University Press.
- 2. B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill.
- 3. David and Martin, Analog Integrated Circuit Design, Wiley Publication.
- 4. R. Jacob Baker, CMOS Circuit Design, Layout, and Simulation, Wiley Publication.

L = Lecture, T = Tutorial, P = Practical, C = Credit