NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY B.Tech. Electronics & Communication Engineering Semester - VI Department Elective III

L	Τ	Р	С
3	I	2	4

Course Code	2ECDE59
Course Title	Testing and Verification of Digital Circuits

Course Outcomes (COs):

At the end of the course, the students will be able to

- 1. Perform functional and timing verification.
- 2. Identify possible physical defects and model them as logical faults to determine their concerned test vectors.
- 3. Develop scan chain insertion and generate the test set.
- 4. Develop Design-for-Test and Built-In-Self-Test circuits as per the given applications.

Syllabus:

Teaching Hours:45

UNIT I: Introduction to Testing	04		
Testing philosophy, Role of testing, Digital and analog circuit testing, Technology trends affecting			
testing. UNIT II: Test Equipment, Economics and Quality			
Test economics, Defining cost, Benefit-cost analysis, The rule of ten, Yield.	02		
UNIT III: Verification	06		
Importance of verification, Verification plan, Verification flow, Levels of verification, Verification			
methods and languages, Functional Verification: Introduction to testing bench, Testbench			
architecture, Types of test benches, Case study.			
UNIT IV: Static Timing Analysis	05		
Need for Timing Analysis, Dynamic Timing Analysis, Static Timing Analysis, Critical Path and			
Maximum Operating Frequency, Set-up and Hold Time Violation, Remedies for Violation, Time			
Borrowing. UNIT Ve Foult Modelling	07		
UNIT V: Fault Modelling Defects- Errors-Faults, Functional Versus Structural Testing, Level of fault models, A glossary of	07		
fault models, Single stuck-at fault, Multiple stuck-at faults, Fault equivalence.			
UNIT VI: Design For Testability			
Ad-hoc Design for Testability techniques, Structured DFT, Scan-Chain insertion, Scan architecture,	07		
Test for scan circuits, Full serial integrated scan, Multiple scans, Partial scan isolated serial scan,			
Non-isolated scan.			
UNIT VII: Automatic Test Pattern Generation	07		
Digital circuit testing, Testability measures: Controllability, Observability, Basic ATPG,			
Combinational ATPG Algorithms.			
UNIT VIII: Built-In Self-Test	04		
Introduction to BIST concepts, Hardcore, Level of test, Test pattern generation for BIST, Generic			
off-line BIST architectures, MBIST.	03		
UNIT IX: System-Level Test Introduction to boundary-scan standards, JTAG 1149.1 standard, TAP/TAM, Introduction to	03		
Testing of Memory and IP Cores.			
result of memory and it cores.			

Self-Study:

The self-study content will be declared at the commencement of the semester. Around 10% of the question will be asked from self-study content.

Laboratory Work:

Laboratory work will be based on the above syllabus with minimum of 10 experiments to be incorporated.

Suggested Readings:

- 1. M. L. Bushnell and V. D. Agrawal-Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Kluwer
- 2. Janick Bergeron, Writing Test benches-Functional Verification of HDL Models, Springer
- 3. Miron Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems Testing and Testable Design, John Wiley and Sons/ revised by IEEE
- 4. Laung-Terng Wang et al., VLSI Test Principles and Architecture, Morgan Kaufman
- 5. Spear, Chris, Tumbush, Greg, SystemVerilog for Verification A Guide to Learning the Test-bench Language Features, Springer

L = Lecture, T = Tutorial, P = Practical, C = Credit