NIRMA UNIVERSITY

School of Technology, Institute of Technology B.Tech. Electronics & Communication Engineering Semester - VII

Department Elective IV

L	T	P	C
3	-	-	3

Course Code	2ECDE09
Course Title	MEMS Design

Course Outcomes (COs):

At the end of the course, students will be able to -

- 1. analyze the concepts of advanced Micro/Nanofabrication technologies.
- 2. design different techniques and processes for microsensors.
- 3. identify applications of MEMS in the area of optical communication, RF modulators, switches, devices, and displays.
- 4. apply techniques of RF MEMS switches in the design of relays, varactors, phase shifter, and antennas.

Syllabus Teaching hours: 45

UNIT I: Introduction to MEMS

Advanced Micro/Nano Fabrication Technologies: Plasma physics, ICP etch, Deep Si etch, Deep oxide etch, Surface micromachining, Bulk micromachining: multiple wafer stack, SOI, SCREAM, CMOS-MEMS: Thin-film, bulk, DRIE, CMOS-based Sensors, and Interface Circuits Design

UNIT II: Optical MEMS

Chemical, Thermal, Inertial, Interface circuit design, Optical MEMS: Fundamentals of light: **08** Propagation, Interference, Doppler Effect, Polarization, Coherence, Micromirrors, Microlens; Microgratings Corner cube reflectors, Optical communications

UNIT III: RF MEMS

Phase modulators, attenuators, switches, Displays, Scanners, Biosensors, Spectroscopy; Biomedical 10 Imaging, RF MEMS

UNIT IV: RF MEMS Switches

RF MEMS switches and Micro Relays, MEMS varactors and inductors, MEMS phase shifters and 10 filters, micromachined antennas

UNIT V: MEMS Packaging

MEMS Packaging: Packaging design, materials, packaging techniques: Bonding, Sealing, Dicing, **04** Wafer-level packaging, packaging for medical, aerospace, and RF MEMS applications

UNIT VI: RF MEMS Case Studies

Case Study on RF MEMS switches, RF MEMS attenuators, RF MEMS resonators, etc.

05

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings:

- 1. G. Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill
- 2. S. Senturia, Microsystem Design, Kluwer Academic Publishers
- 3. M. Madou, Fundamentals of Microfabrication, Chemical Rubber Company Press
- 4. G. Rebeiz, RF MEMS: Theory, Design and Technology, John Wiley & Sons
- 5. B. Bouma and G. Tearney, Handbook of Optical Coherence Tomography, Marcel Dekker Inc

L = Lecture, T = Tutorial, P = Practical, C = Credit