NIRMA UNIVERSITY School of Technology, Institute of Technology B.Tech. Electronics & Communication Engineering Semester - VII Department Elective IV

L	Т	Р	С
3	-	-	3

Course Code	2ECDE10
Course Title	Modern Processor Architecture

Course Outcomes (CO):

At the end of the course, students will be able to –

- 1. comprehend the design steps for pipelined processors and classify pipelined processors.
- 2. deploy suitable superscalar technique(s) to enhance the performance of processors for given specifications.
- 3. recommend suitable data and memory flow techniques to overcome hazards in modern processor architectures.
- 4. design finite state machine diagram to overcome cache coherence issues in the multiprocessor system.

Syllabus Teaching hours: 45	5
UNIT I: Processor Design 04	1
Introduction and evolution, Instruction set processor design, Principles of processor performance,	
Instruction level parallel processing	
UNIT II: Pipelined Processors and Super Scalar Organization 10)
Pipelining fundamentals, Pipelined processor design, Deeply pipelined processors, Limitations of	
Scalar pipelines, Superscalar pipeline overview	
UNIT III: Memory and I/O Systems 04	1
Introduction and concept of latency and bandwidth, Memory hierarchy implementation, Virtual	
Memory systems, Input/output systems	
UNIT IV: Super Scalar Techniques 13	3
Instruction Flow techniques, Register Data Flow Techniques, Memory data flow Techniques	
UNIT V: Multiprocessors and Thread-Level Parallelism 08	3
Introduction to Multiprocessor Systems, Symmetric Shared-Memory Architectures, Performance of	
Symmetric Shared-Memory Multiprocessors, Distributed Shared Memory and Directory-Based	
Coherence, Explicitly, multithreaded processors	
UNIT VI: Case Studies 00	5
Recent Modern Processor Architectures, RISC-V Architectures	

Self-Study:

The self-study content will be declared at the commencement of the semester. Around 10% of the question will be asked from self-study content.

Suggested Readings:

- 1. J. Shen and M. Lipasti, Modern processor Design Fundamentals of Superscalar Processors, TMH
- 2. D. Patterson and J. Hennessy, Computer Organization and Design: The Hardware/Software Interface, Morgan Kaufman
- 3. William Stallings, Computer Organization & Architecture Designing For Performance, Pearson
- 4. Behrooz Parahami, Computer Architecture from Microprocessor to Super Computer, Oxford

L= Lecture, T= Tutorial, P= Practical, C= Credit