NIRMA UNIVERSITY School of Technology, Institute of Technology B.Tech. Electronics & Communication Engineering Semester - VII <u>Department Elective IV</u>

		L T P C 3 3
Course Code	2ECDE11	
Course Title	Cyber Physical System	
 Course Outcomes (COs): At the end of the course, the students will be able to - 1. address challenges in implementing a cyber-physical system from a computational perspective. 2. integrate real-valued and dense time real-time systems with software-based discrete automated control. 3. design of cyber-physical systems using formal methods. 4. validate cyber-physical system problems for safety assurance and security aspects. 		
Syllabus	Tea	aching Hours: 45
UNIT I: Introduction to Cyber-Physical Systems05		
Cyber-Physical Systems (CPS) in the real world, Basic principles of design and validation of CPS, Industry 4.0, AutoSAR, IIOT implications, Building Automation, Medical CPS		
UNIT II: CPS - Platform Components 00		
CPS HW platforms - Processors, Sensors, Actuators, CPS Network – Wireless Hart, CAN, Automotive		
Ethernet, CPS Software stack - RTOS, Scheduling Real-Time control tasks 08UNIT III: Principles of Automated Control Design08		
Basic control theory, Dynamical Systems, and Stability, Controller Design Techniques, Stability Analysis: CFLs, MLFs, stability under slow switching, Performance under Packet drop and Noise, Tutorial: MATLAB toolboxes - Simulink, State flow		
UNIT IV: CPS Implementation		
Features, software components, Mapping software components to ECUs, CPS Performance Analysis - effect of scheduling, bus latency, sense and actuation faults on control performance, network congestion, Control, Bus and Network Scheduling using True-time		
UNIT V: Formal Methods for Safety Assurance of Cyber-Physical Systems		
Advanced automata-based modeling and analysis, Basic introduction and examples, Timed and Hybrid Automata Formal Analysis, Flow pipe construction, reachability analysis, Analysis of CPS Software, Weakest Pre-conditions, Hybrid Automata Modeling		•
UNIT VI: Secure Deployment of CPS 0		
Attack models, Secure Task mapping and Partitioning, State estimation for attack detection, Case study - Vehicle ABS hacking, Power Distribution, and Attacks on Smart Grids		
UNIT VII: CPS Case Studies and Tutorials Automotive: SW controllers for ABS, ACC, Lane Departure Warning, Suspension Control, Healthcare: Artificial Pancreas/Infusion Pump/Pacemaker, Green Buildings: automated lighting, AC control, and Agriculture		
Self-Study: The self-study contents w will be asked from self-st	vill be declared at the commencement of the semester. Around 10 udy contents.	1% of the questions

Suggested Readings:

1. E.A.Lee, Sanjit Seshia, Introduction to Embedded Systems: A Cyber-Physical Systems Approach, MIT Press

2. Rajeev Alur, Principles of Cyber-Physical Systems, MIT Press

L = Lecture, T = Tutorial, P = Practical, C = Credit