NIRMA UNIVERSITY School of Technology, Institute of Technology B.Tech. Electronics & Communication Engineering Semester - VII Department Elective V

L	Т	Р	С
3	-	2	4

Course Code	2ECDE63
Course Title	High Performance VLSI Design

Course Outcomes (COs):

At the end of the course, students will be able to –

- 1. evaluate the noise effects for integrated circuits.
- 2. modeling of devices using submicron technology.
- 3. design of VLSI interconnects for nanometer technology.
- 4. analyze and design on-chip clock generators and distribution.

Syllabus Teaching Hours:	: 45
UNIT I: Introduction / Overview of Integrated Circuits	03
MOS Transistor, Integrated Circuits, IC Design Objectives Technology Scaling: Device Scaling,	
Small Geometry Effects, Device Enhancements, Interconnect	
UNIT II: Scaling and Enhance Interconnect Networks	08
Interconnect Design Criteria, Interconnect passive parameters/ Components (Resistance,	
Capacitance, and Inductance), Signal Propagation analysis, Interconnect coupling noise, Global	
signaling	
UNIT III: Power Management	07
Power Generation: Linear regulators, Switched capacitor converters, Switched DC-DC converters,	
on-chip converters, Power Distribution Networks	
UNIT IV: CAD & Analysis	08
Design flow for on-chip power networks, Model RLC Impedance, characterizing load circuits, On-	
chip Power/ Ground Noise analysis,	
UNIT V: Synchronization	07
Synchronous Systems, Characteristics, Fully Synchronized Circuits, Self-timed circuits, GALS	
Circuits	
UNIT VI: On-chip Clock Generation and Distribution	06
Ring Oscillators, Crystal Oscillators, Phases Locked Loop, and Delay Locked Loop, clock tree,	
reset circuit design and distribution	
UNIT VII: New Logic, Transistor	06
Models for High Speed and Low Power Design: FINFET, Carbon Nano Tubes (CNT), Techniques	
to reduce noise and power dissipation in VLSI Circuits	
Self-Study.	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the question will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on the above syllabus with a minimum of 10 experiments to be incorporated.

Suggested Readings:

1. Emre Salman, Eby Friedman, High-Performance Integrated Circuit Design, MGH.

- 2. Neil Weste and David Harris, CMOS VLSI Design: A Circuits and Systems Perspective, Addison Wesley
- 3. H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley VLSI Systems Series
- L = Lecture, T = Tutorial, P = Practical, C = Credit