NIRMA UNIVERSITY School of Technology, Institute of Technology B.Tech. Electronics & Communication Engineering Semester - VII Department Elective IV

Course Code	2ECDE64
Course Title	Wireless Sensor Networks

Course Outcomes (COs):

At the end of the course, the students will be able to

- 1. comprehend the principles, features, network architecture, and applications of the wireless sensor network.
- 2. select a suitable type of sensor, hardware platform, communication protocol, energy harvesting technique, and security protocol for a given application.
- 3. evaluate the performance of Sensor-MAC, Zebra-MAC Medium Access Control protocols for given wireless sensor networks for power consumption, fairness, channel utilization, and control packet overhead.
- 4. analyse the performance of Congestion Detection and Avoidance, Event-to-Sink Reliable Transport Control and Pump Slowly Fetch quickly protocols for a given wireless sensor network for reliability, congestion control and control packet overhead parameters.

Syllabus Teaching Hours:	45
UNIT I: Introduction and Overview of Wireless Sensor Networks	03
Evolution, Challenges in Sensor network design, Applications of Sensor Networks in Science,	
Engineering and Societal Domain	
UNIT II: Single-node Architecture	04
Type of sensors for various applications, Hardware components, Energy management of sensor	
nodes, Examples of sensor nodes	
UNIT III: Network Architecture	04
Sensor network scenarios: single-hop and multi-hop, network, multiple sink/sources, optimization	
goals and figures of merit, Design principles for sensor networks	
UNIT IV: Wireless Communication and Network Standards	06
Wireless channel and communication fundamentals for wireless sensor network, transceiver design	
considerations, Wireless standards- IEEE 802.11, Zigbee, Bluetooth	
UNIT V: Medium Access Control Protocols for Wireless Sensor Networks	06
Fundamentals of MAC Protocols, Types of MAC protocols - Schedule-Based and Random Access-	
Based Protocols, Case Study- Sensor-MAC, Zebra-MAC	
UNIT VI: Routing Protocols for Wireless Sensor Networks	06
Routing Challenges and Design Issues, Routing Strategies - Flooding and Its Variants, LEACH,	
Directed diffusion, Geographical routing, SPIN	
UNIT VII: Transport Control Protocols for Wireless Sensor Networks	05
Feasibility of Using TCP or UDP for WSNs, Examples of Existing Transport Control Protocols-	
Congestion Detection and Avoidance (CODA), Event-to-Sink Reliable Transport (ESRT), Pump	
Slowly Fetch quickly (PSFQ)	
UNIT VIII: Time Synchronization, Localization, and Positioning	06
Time synchronization problem, Protocols based on sender/receiver synchronization, Protocols based	
on receiver/receiver synchronization, Properties of localization and positioning procedures, Singlehop	
and Multi-hop localization.	
UNIT IX: Operating System for Sensor Nodes	05
Embedded operating systems, programming paradigms, and application programming interfaces,	

Structure of operating system, and protocol stack

Laboratory Work:

Laboratory work will be based on the above syllabus with a minimum of 10 experiments to be incorporated.

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings:

- 1. Holger Karl, Andreas Willig, John, Protocols, and Architectures for Wireless Sensor Networks, Wiley Publications.
- 2. Kazem Sohraby, Daniel Minoli, Taieb Znati, John, Wireless Sensor Networks, Technology, Protocols, and Applications, Wiley Publications.
- 3. Edgar H. Callaway, Wireless Sensor Networks, Architectures and Protocols, CRC Press.

L = Lecture, T = Tutorial, P = Practical, C = Credit