NIRMA UNIVERSITY School of Technology, Institute of Technology B.Tech. Electronics & Communication Engineering Semester - VII Department Elective V

L	Т	Р	С
3	-	2	4

Course Code	2ECDE66
Course Title	Embedded Operating Systems

Course Outcomes (COs):

At the end of the course, students will be able to -

- 1. comprehend fundamental concepts of real-time systems.
- 2. recognize processes, threads, tasks, task scheduling, inter-process communication, and input-output operations related to real-time systems.
- 3. decide an embedded operating system for a given embedded system application.
- 4. evaluate the performance of μ COS and RTx51 Tiny for a given embedded system application for time and memory complexity.

Syllabus Teaching Hou	
UNIT I: Introduction	02
Operating System functions, Computing System architecture, Operating-System Structure,	
Operating-System Operations, System Calls, Types of System Calls, System Programs, Types	
of Operating System	
UNIT II: Operating System Services	04
Process Management, Memory Management, Input-Output Management, Storage Management, Protection, and Security, Kernel Data Structures	
UNIT III: Processes, Threads, and Tasks	04
Process Concept, Operations on Processes, Threads, Operations on Threads, Tasks,	
Multithreading Models, Threading Issues, Comparison between Processes and Threads	
UNIT IV: Real-Time Systems	06
Real-Time Systems characteristics, types of real-time systems, Timing constraints, Multi-rate	
Systems, Context Switching, Multitasking, Cooperative Multi-tasking, Pre-emptive Operating	
Systems structure, Timing requirements on processes, Features of an Embedded Operating	
System, Comparison of Embedded Operating Systems and General Purpose Operating	
Systems, POSIX	
UNIT V: Real-Time Task Scheduling	06
Process state and scheduling, Clock driven and Event-driven scheduling, Rate-Monotonic Scheduling, Earliest-Deadline First Scheduling, Fault-Tolerant Scheduling	
UNIT VI: Inter-process Communication	06
Signals, Shared Memory Communication, Message-Based Communication	00
UNIT VII: I/O Operations	06
Synchronous and Asynchronous I/O, Interrupt Handling, Device Drivers	00
UNIT VIII: Handling Resource Sharing and Dependencies Among Real-Time	06
Tasks	00
Resource sharing Protocols: Priority Inheritance Protocol, Highest locker protocol, priority	
ceiling protocol, Priority Inversion, Issues in resource sharing protocols	
UNIT IX: Case Study	05
Process management, memory management, I/O management, and file management in μ COS,	
and RTx51 Tiny	
-	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on the above syllabus with a minimum of 10 experiments to be incorporated.

Suggested Reading:

- 1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Concepts, John Wiley & Sons, Inc.
- 2. Rajib Mall, Real Times Systems Theory and Practice, Pearson Education
- 3. Computers as Components Principles of Embedded Computing System Design by Wayne Wolf, Morgan Kaufman
- 4. Real-Time Systems, Krisha & Shin, McGraw Hill
- L = Lecture, T = Tutorial, P = Practical, C = Credit