School of Technology, Institute of Technology B. Tech (Instrumentation & Control Engineering) Semester VI

L	T	P	C
3	0	2	4

Course Code	2IC601
Course Title	Industrial Drives and Control

Course Learning Outcome:

At the end of the course, students will be able to –

- illustrate the operation of various power converters and electric drives
- simulate and analyze various power converters and electric drives
- design different circuits to meet the requirements of given conditions
- realize the role of power converters and electric drives in industrial applications

Syllabus	Teaching Hours
UNIT 1: Introduction to power electronic converters Overview of different types of power converters and their importance in industrial applications	01
UNIT 2: Choppers Introduction, basic classification – step down, step up and step up/down, basic chopper operation, control strategies, chopper configuration, thyristor chopper circuits, Jones' chopper, Morgan's chopper, related problems	08
UNIT 3: Inverters Introduction, classification of inverters, series inverters, parallel inverters, Single- phase half and full bridge inverters, Performance parameters of inverters, practical inverter circuits – McMurray inverter, McMurray-Bedford inverter, related problems	08
UNIT 4: Cycloconverters Introduction, basic principle of operation, single-phase to single-phase cycloconverter, three-phase half-wave cycloconverter.	04
UNIT 5: Introduction to electric drives	04

Introduction, basic principle of operation, classification of electric drives, different types of loads.

UNIT 6: DC drives

Introduction, basic machine equations and characteristic curves, schemes for DC motor speed control, single-phase DC drives, three-phase DC drives, comparison of half-wave converter, semi-converter, full converter and dual converter drives, chopper drives, Introduction to stepper & servo drives.

10

UNIT 7: AC drives

Introduction, basic principle of operation, speed torque characteristics, speed control of induction motor, stator voltage control, rotor resistance control, stator frequency control, v/f control, stator current control, slip power recovery scheme, Scherbius drive, Kramer drive.

10

Self Study:

The self study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

Laboratory Work:

Laboratory work will consist of minimum 10 experiments based on the above syllabus.

References:

- 1. M. D. Singh and K. B. Khanchandani, Power Electronics, Tata McGraw Hill Publication.
- 2. P. S. Bimbhra, Power Electronics, Khanna Publication.
- 3. M. Rashid, Power Electronics, Pearson Education.
- 4. Asghar M. S. Jamil, Power Electronics, PHI Publication.