Nirma University School of Technology, Institute of Technology B. Tech (Instrumentation and Control Engineering) Department Elective

L	Т	Р	С
3	0	0	3

Course Code	2ICDE03
Course Title	Data Communication and Industrial Networking

Course Learning Outcome:

At the end of the course, students will be able to -

- explain the concepts of communication model and standards
- compare various industrial networking standards
- demonstrate the applications of communication protocols in the field of process automation

Syllabus	Teaching Hours
UNIT 1: Introduction to Networks in Process Automation	03
Introduction to Open system interconnection (OSI) model, network topology, media access methods, cables.	
UNIT 2: Introduction to Physical Standards	
Introduction to RS-232, RS-485 standards, troubleshooting of the RS-232 and RS-485, RS-485 converters, difference between RS-232 and RS-485 standards, IEEE 802 standard	05
UNIT 3: Modbus and Modbus plus Protocols	06
Introduction to communication model for industries, overview of Modbus, transmission modes, data types, function codes and frame design, overview of Modbus transmission control protocol/internet protocol (Modbus TCP/IP), Modbus Plus, troubleshooting of Modbus and Modbus Plus protocol, comparison of Modbus variants, introduction of tools.	

UNIT 4: Fieldbus

Fieldbus technology vs conventional communication methods, fieldbus devices, problems with fieldbus, wiring and installation practice with fieldbus, termination methods, installation of the complete system, troubleshooting of fieldbus system.

UNIT 5: Sensor and Device Level Protocols

Industrial Ethernet, actuator sensor interface (AS-I), controller area network (CAN), Device Net, highway addressable remote transducer (HART) protocol.

UNIT 6: Foundation Fieldbus

Overview of foundation fieldbus, physical layer and wiring rules, data link layer, application layer, user layer, error detection and diagnostics.

UNIT 7: ProfiBus

Overview of profibus variants, protocol stack and communication model, system operation, troubleshooting, comparison and applications of various standards, emerging technologies for industrial data communication.

UNIT 8: OPC for Process Control

Overview of open platform communications (OPC), OPC architecture, OPC DA3.0 data access, case studies.

UNIT 9: Industrial Ethernet and IIOT

Industrial Ethernet, Overview of Industrial internet of things (IIOT), Message Queuing Telemetry transport (MQTT), Advanced message queuing protocol (AMQP), Representational state transfer (REST), OPC unified architecture (OPC UA), The data hub transfer protocol (DHTP).

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

References:

- 1. John Park, Steve Mackay, Edwin Wright, Practical Data Communications for Instrumentation and Control, Elsevier Publication
- 2. Behrouz Forouzan, Data Communications & Networking, Tata McGraw-Hill Publication.

06

05

05

06

03

- 3. Deon Reynders, Steve Mackay, Edwin Wright, Practical Industrial Data Communications: Best Practice Techniques, Elsevier Publication.
- Alasdair Gilchrist, Industry 4.0: The Industrial Internet of Things, Apress
 Giacomo Veneri, Antonio Capasso, Hands-on Industrial Internet of Things, Packt Publication