Nirma University School of Technology, Institute of Technology B. Tech (Instrumentation and Control Engineering)

		•	I	Г	
	-	2	0	2	
Course Code	2ICDE57				
Course Title	Digital Design for Instrumentation				
Course Learnin At the end of the describe a develop V implement	ng Outcome: course, students will be able to – architecture and working of different types of programmable l Verilog code for different types of combinational and sequentiant applications related to instrumentation on programmable log	logic d al circ gic de	evice uits vices	S	
Syllabus			T	Teachin Hour	ng s
UNIT 1: Introd Introduction to digital Hardwa between FPGA	luction to Design Concepts digital design, significance of digital design over analog re, design process, design of digital hardware, diff and microcontroller based designs	desigi ferenc	n, e	01	
UNIT 2: Progr	ammable Logic Devices			04	
Difference betw Arrays(FPGA), language for HI	veen ASIC design and FPGA design, Field Programmable Applications of CPLDs and FPGAs, Introduction to DL programming	e Logi Verilo	ic Ig		
UNIT 3: Comb	inational Circuit Building Blocks			04	
Multiplexers, d circuits, Verilog	lecoders, encoders, code converters, arithmetic comp for combinational circuits	pariso	n		
UNIT 4: Flip-fl	lops, Registers, Counters			0.4	
Basic latch and counters, reset s code, Using Ver	d flip flop structures, design with JK flip-flop, re- synchronization, BCD counter, registers and counters in ilog sequential statements for registers and counters	gister Verilo	s, og	04	
UNIT 5: Sequential Circuits Basic design steps of sequential circuits, State machine concept, design of finite state machines, Moore design, Mealy design concepts designing of			of of	09	

counters, registers using Finite state machine

ТР 1 **C**

UNIT 6: Applications related to Instrumentation

Analog to digital converter interface, digital to analog interface, data acquisition, control algorithms, memory implementation, pulse width modulation generation, stepper motor speed control.

Self Study:

The self study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

Laboratory Work:

Laboratory work will consist of minimum 10 experiments based on the above syllabus.

References:

- 1. Stephen Brown, Zvonko Vranesic, Fundamentals of digital logic design with VHDL, TATA McGraw-Hill Publication.
- 2. Charles H Roth, Fundamental of logic design, Jaico Publishing House.
- 3. Volnei A Pedroni, Circuit Design with VHDL, MIT press.
- 4. <u>Douglas L. Perry</u>, VHDL: Programming by Example, <u>Tata McGraw-Hill</u> Publication.
- 5. Kevin Skahill, VHDL for Programmable Logic, Pearson Education.
- 6. J.Bhaskar, VHDL Primer, PHI Publication.