Nirma University School of Technology, Institute of Technology B. Tech (Instrumentation and Control Engineering)

Semester VII

L	Т	Р	С
2	0	2	3

Course Code	2ICDE61
Course Title	Deep learning for vision systems

Course Outcomes (CO):

At the end of the course, students will be able to -

- 1. illustrate basic architecture of convolution neural networks
- 2. evaluate existing practical vision systems
- 3. optimize convolutional neural network model
- 4. design deep learning based real life vision applications

Syllabus:	Teaching Hours
UNIT 1: Introduction to computer vision Image acquisition, image pre-processing, feature extraction, computer vision pipeline, applications of computer vision	
UNIT 2: Deep learning Single layer perceptron, multi-layer perceptron (MLP), activation functions, errors functions, backpropagation, feedforward process, optimization algorithm	05
UNIT 3: Convolutional neural networks Image classifications using MLP, basic components of a convolutional neural network (CNN), CNN architecture, image classification using CNN, overfitting and underfitting, popular CNN architectures	
UNIT 4: Design of deep learning structure Baseline model design, define performance metrics, data preparation, model training, model evaluation, performance estimation, network improvements, hyperparameter tuning, optimization and learning, regularization, batch normalization	

UNIT 5: Image classifications

Object detection, transfer learning, object classification, advanced CNN

architectures

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will consist of minimum 10 experiments based on the above syllabus.

References:

- 1. Mohamed elgendy, Deep learning for vision systems, Manning publications
- 2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep learning, The MIT press publications
- 3. Francois chollet, Deep learning with python, Manning publications
- 4. Josh patterson, Adam gibson, Deep learning: A practitioner's approach, Shroff/O'Reilly publications
- 5. Nikhil buduma, Nicholas locascio, Fundamentals of deep learning: Designing next-generation machine intelligence algorithms, Shroff/O'Reilly publications

L= Lecture, T= Tutorial, P= Practical, C = Credit