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The calcium signaling plays an important role in expansion and contraction of myocytes. This calcium signaling
is achieved by diffusion of calcium, out flux of calcium through pumps, in flow of calcium through leak and
buffering mechanisms in cardiac myocytes. In this paper an attempt has been made to develop a model of
calcium signaling in myocytes incorporating diffusion of calcium, pump, leak and excess buffers. The model has
been developed for a one dimensional steady state case. Appropriate boundary conditions have been framed.
The finite element method has been employed to obtain the solution. The numerical results have been used to
study the effect of buffers, pump and leak on calcium signaling in myocytes.
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1. INTRODUCTION
The functioning of heart is achieved through expansion and con-
traction of cardiac myocytes. This expansion and contraction of
myocytes is responsible for pumping of blood from heart to
arteries.15 In order to understand the function of heart it is of
crucial interest to understand the processes involved in cardiac
myocytes. The specific calcium signaling is required to achieve
the above function of cardiac myocytes. But this calcium signal-
ing in cardiac myocytes is still not well understood.

The concentration dependent binding of calcium to buffers
serves as an indicator of the concentration of free calcium in
intracellular measurements. The active elements of the exchange
process are channels, serca pump and leaks in the membrane.
The intracellular binding proteins bind with calcium ion which
results into the contraction of cardiac myocytes. SERCA pumps
transport the calcium against its electro chemical gradient. Leak
receives the calcium that comes from pump and is stored in the
sarcoplasmic reticulum (SR).Within the SR calcium maintains
the high capacity and low efficiency of calcium binding proteins.
They maintain the balance of calcium ions through active and
passive process.16 Attempts are reported in the literature for the
study of calcium regulation in neuron cell, astrocyte cell, fibrob-
last cell, oocyte cell, acinar cell etc.3�4�7�9 But very few attempts
are reported in the literature for the study of calcium signaling
in myocytes.1�5�6�8�12 Most of the studies reported on calcium
signaling in myocytes are experimental.8�11 Some attempts are
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reported for the study of individual effect of pump, leak and
influx on calcium distribution in myocytes.5�16 But no attempt is
reported to study the combined effect of source in-flux, buffer,
leak and pump altogether on calcium signaling in myocytes. In
the present paper an attempt has been made in this direction
to propose a model for calcium signaling in myocytes in the
presence of influx, buffers, leak and pump for a one dimen-
sional steady state case. The finite element method has been
employed to obtain the solution. The effect of the parameters like
source influx, pump, leak and buffers on the calcium signaling in
myocytes have been studied with the help of numerical results.

2. MATHEMATICAL FORMULATION
The calcium kinetics in myocytes is governed by a set of follow-
ing reaction diffusion equations12

Ca2+ +Bi

k+⇐⇒
k−

CaBi (1)

where Bi and CaBi are free and bound buffers respectively, and
i is an index over buffer species. k+i and k−i are association and
dissociation rate constants for i respectively. Using mass action
kinetic law and Fick’s law, the diffusion equations can be stated
as:12

��Ca2+�
�t

=DCa�
2�Ca2+�+∑

i

Ri+J (2)

��Bi�

�t
=DBi

� 2�Bi�+Ri (3)
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��CaBi�

�t
=DCaBi

� 2�CaBi�−Ri (4)

Here the reaction terms R′
is are given by

Ri =−k+i �Ca
2+��Bi�+k−i �CaBi� (5)

Where DCa, DBi, DCaBi are diffusion coefficients of free calcium,
free buffer and Ca2+ bound buffer respectively. And J represents
flux which is either influx or outflx.12

Since Ca2+ has molecular weight that is small in comparison
to most of Ca2+ binding species, the diffusion constant of each
mobile buffer is not affected by the binding of Ca2+ that is DBi =
DCaBi =Di . Hence Eqs. (3) and (4) gives12

��Bi�T
�t

=Di�
2�Bi�T (6)

and
Ri =−k+i �Ca

2+��Bi�+k−i ��Bi�T − �Bi�� (7)

where
�Bi�T = �CaBi�+ �Bi� (8)

In excess buffer approximation, Eqs. (2)–(5) are simplified by
assuming that the concentration of free Ca2+ buffer is high
enough such that its loss is negligible. There is no sink and source
for proteins. The association and dissociation rate constants for
the bimolecular association reaction between Ca2+ and buffer can
be combined to obtain a dissociation constant Ki,

12

Ki = k−i /k
+
i (9)

The dissociation constant of the buffer has units of �M and the
concentration of Ca2+ is necessary to cause 50% of the buffer
to be in the Ca2+ bound form. Considering the steady state of
Eqs. (2)–(4) in the absence of influx gives15

�Bi�� = Ki�Bi�T
Ki+ �Ca2+��

(10)

and

�CaBi�� = �Ca2+���Bi�T
K i

+ �Ca2+�� (11)

where �Ca2+�� is the “background” or ambient free Ca2+ con-
centration, and �Bi�� and �CaBi�� are the equilibrium concen-
trations of free and bound buffer with respect to index i. The
equation of calcium diffusion becomes15

��Ca2+�
�t

=DCa�
2�Ca2+�−∑

i

k+i �Bi����Ca
2+�− �Ca2+���+J

(12)
Incorporating out flux due to serca pump Jpump and in flux due
to leak Jleak in Eq. (12) for a one dimensional steady state case
in polar coordinates is given by16

1
r

d

dr

(
r
d�Ca2+�

dr

)
− k+�B��

DCa

��Ca2+�− �Ca2+���

+ 1

DCa

�Jleak−Jpump�= 0 (13)

Where
Jleak = Vleak��Ca

2+�SR− �Ca2+��

and

Jpump = Vpump ·
�Ca2+�2

K2
pump+ �Ca2+�2

Here Vleak, Vpump and Kpump are respectively the leak rate, serca
pump rate and dissociation rate of serca pump. The point source
of calcium is assumed at r = 0 �m. Thus the appropriate bound-
ary condition can be taken as13

lim
r→0

(
−2	DCar

��Ca2+�
�r

)
= 
Ca (14)

Here an influx of free Ca2+ is taken at the rate 
Ca by Faraday’s
law, 
Ca = ICa/zF .

13 It is assumed that background concentration
of Ca2+ is 0.1 �M and as it goes far away from the source. The
radial distance is considered as finite one i.e., radius of the cell.13

lim
r→7�8

�Ca2+�= �Ca2+�� = 0�1 �M (15)

The one dimensional finite element discretization is given by
Figure 1.

Here ei denotes the ith element. And ri and ri+1 denotes initial
and terminal nodes of ith element.

The study is performed for two cases as given below:
Case I: When Kpump >> �Ca2+� then we have2

�Ca2+�2

K2
pump+ �Ca2+�2

≤ �Ca2+�2

K2
pump

≤ �Ca2+�
Kpump

(a)

In view of above Eq. (12) is taken as:

1

r

d

dr

(
r
d�Ca2+�

dr

)
− k+�B��

DCa

��Ca2+�− �Ca2+���

+ Vleak

DCa

(
�Ca2+�SR− �Ca2+�

)− Vpump

DCa

· �Ca
2+�

Kpump
= 0 (16)

Now the finite element method is employed to solve Eq. (16)
with boundary conditions (14) and (15). The discretized varia-
tional form of Eq. (16) is given by

I �e� = 1

2

∫ rj

ri

�J
�e�
1 +J

�e�
2 −J

�e�
3 +J

�e�
4 +J

�e�
5 �dr−

[

Ca

2	DCa

u�e�

]rj
ri

(17)

Fig. 1. One dimensional discretization.

2



R E S E A R CH A R T I C L EJ. Med. Imaging Health Inf. 5, 1–6, 2015

where

J
�e�
1 = r

(
du�e�

dr

)2

J
�e�
2 = k+�B��

DCa

ru�e�2

J
�e�
3 = 2k+�B��

DCa

u�u
�e�r

J
�e�
4 =−Vleak

DCa

r

(
u�e�uSR− u�e�2

2

)

J
�e�
5 =− Vpumpr

DCaKpump

· u
�e�2

2

Here, ‘u’ is used in lieu of �Ca2+� for our convenience, e =
1�2� � � � �N .
Case II: When Kpump << �Ca2+� then we assume Kpump =
��Ca2+� for 0 ≤ �≤ 1,2

�Ca2+�2

K2
pump+ �Ca2+�2

= 1

�2+1
(b)

In view of above Eq. (12) is taken as:

1
r

d

dr

(
r
d�Ca2+�

dr

)
− k+�B��

DCa

��Ca2+�− �Ca2+���

+ Vleak

DCa

��Ca2+�SR− �Ca2+��− Vpump

DCa

1

�2+1
= 0 (18)

Now the finite element method is employed to solve Eq. (18) with
boundary conditions (14) and (15). The discretized variational
form of Eq. (26) is given by

I �e� = 1
2

∫ rj

ri

�J
�e�
1 +J

�e�
2 −J

�e�
3 +J

�e�
4 +J

�e�
5 �dr−

[

Ca

2	DCa

u�e�

]rj
ri

(19)
where

J
�e�
1 = r

(
du�e�

dr

)2

J
�e�
2 = k+�B��

DCa

ru�e�2

J
�e�
3 = 2k+�B��

DCa

u�u
�e�r

J
�e�
4 =−Vleak

DCa

r

(
u�e�uSR−

u�e�2

2

)

J
�e�
5 = Vpumpr

DCaKpump

2

1+�2

u�e�2

2

The thickness of each element is very small, therefore u�e� is
assigned linear variation with respect to position as given by

u�e� = C1+C2r (20)

In matrix form the Eq. (20) can be written as

u�e� = PT C�e� (21)

where

PT = � 1 r � and C�e� =
[
C1

C2

]

Also

u�e��ri�= ui = C1+C2ri (22)

u�e��rj�= uj = C1+C2rj (23)

Using Eqs. (21)–(23) we get

ū�e� = P�e�C�e� (24)

Where

P�e� =
[
1 ri

1 rj

]
and ū�e� =

[
ui

uj

]

From Eqs. (21) and (24) we get

u�e� = PT R�e�ū�e� (25)

Where

R�e� = P�e�−1 = 1
rj − ri

[
rj ri

1 1

]

and ri and rj are the boundaries of eth element. Now the integral
given in Eq. (17) for case I and Eq. (19) for case II can also be
written as,

I �e� = 1

2

∫ rj

ri

r �I
�e�
1 + I

�e�
2 + I

�e�
3 �dr− 1

2

∫ rj

ri

r �I
�e�
4 + I

�e�
5 �dr

−
[


Ca

2	DCa

ū�e�

]
e=1

(26)

where

I
�e�
1 = �PT

r R
�e�ū�e��2

I
�e�
2 = k+�B��

DCa

�PT R�e�ū�e��2

I
�e�
3 = −2k+�B��

DCa

u��P
T R�e�ū�e��

I
�e�
4 = Vleak

DCa

�2uSR��P
T R�e�ū�e��− �PT R�e�ū�e��2�

I
�e�
5 = −Vpump

DCaKpump
�PT R�e�ū�e��2

and

I �e� = 1
2

∫ rj

ri

r �I
�e�
1 + I

�e�
2 + I

�e�
3 �dr− 1

2

∫ rj

ri

r �I
�e�
4 + I

�e�
5 �dr

−
[


Ca

2	DCa

ū�e�

]
e=1

(27)

where

I
�e�
1 = �PT

r R
�e�ū�e��2

I
�e�
2 = k+�B��

DCa

�PT R�e�ū�e��2
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I
�e�
3 = −2k+�B��

DCa

u��P
T R�e�ū�e��

I
�e�
4 = Vleak

DCa

�2uSR��P
T R�e�ū�e��− �PT R�e�ū�e��2�

I
�e�
5 = 2Vpump

DCaKpump

· 1
�2+1

�PT R�e�ū�e��

Now I �e� is minimized with respect to ū�e�

dI �e�

dū�e�
= 0

Where

ū�e� = � ui uj �T � e = �1�2� � � � �N �

dI

dū�e�
=

N∑
e=1

M̄�e� dI
�e�

dū�e�
M̄ �e�T

M̄ �e� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1 0

0 1

• •

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�16×2�

�ithrow� ��i+1�throw

and I =∑15
e=1 I

�e��

This leads to following system of linear algebraic equations

�K��N+1×N+1��ū��N+1×1� = �F ��N+1×1� (28)

Here, ū = � u1 u2 • • • uN+1 �T , K is characteristic
matrix and F is characteristic vector. Gaussian Elimination
method is employed to solve the system (28). A computer
program has been developed in MATLAB 7.10 for the entire
problem and simulated on Core i5 processor with 2.40 GHz
processing speed, 64-bit machine with 320 GB memory.

3. NUMERICAL RESULTS AND DISCUSSION
The biophysical parameters used in computation of numerical
results are given in Table I.

Table I. Numerical values of biophysical parameters.8

R Radius of the cell 7.8 �m
ICa Amplitude of elemental Ca2+ release 1 pA
F Faraday’s constant 96500 C/mol
Z Valence of Ca2+ ion 2
DCa Diffusion coefficient of free Ca2+ in

cytosol for Troponin C
780 �m2/s

�B1�T Total concentration for each Ca2+
buffer of Troponin C

70 �M

k+ Association rate constant for Ca2+
binding of Troponin C

39 �M−1S−1

k− Dissociation rate constant for Ca2+
binding of Troponin C

20 S−1

K Dissociation constant of Troponin
C = k−

1 /k
+
1

0.51 �M

�Ca�� Intracellular free Ca2+ concentration
at rest

0.1 �M

Vpump Serca pump rate 400 �MS−1

Vleak Leak rate 0.02 �MS−1

Kpump Dissociation rate of Serca pump 0.2 �M

Fig. 2. Difference of calcium concentration in absence and presence of
pump for case I for different values of source influx.

In Figure 2 the difference in calcium concentration in absence
and presence of pump increases along radius r , from 0 to 1 �m
and then gradually decreases along r between 1 and 3 �m and
thereafter converges to zero rapidly. The difference in calcium
concentration in absence and presence of pump is maximum at
r = 1 �m in myocytes. The maximum difference in the calcium
concentration in absence and presence of pump is higher for
source influx of 1 p A as compared to that for 2 p A. This indi-
cates that pump has more significant effect on calcium signaling
in myocytes at lower values of source influx. This is because
higher values of source influx are able to balance the effect of
out flux from pump.

In Figure 3 the difference in calcium concentration in absence
and presence of pump for 
 = 1 p A and 
 = 2 p A increases
along radius r, from 0 to 2.6 �m and then gradually decreases
along r between 2.6 �m and 5.2 �m and thereafter converges
to zero. The difference in calcium concentration in absence and
presence of pump is maximum i.e., 1 �M for 
 = 1 p A and
0.3 �M for 
 = 2 p A at r = 2.6 �m in myocytes. The maximum

Fig. 3. Difference of calcium concentration in absence and presence of
pump for case II for different values of source influx.
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Fig. 4. Difference of calcium concentration in absence and presence of leak
for case I for different values of source influx.

difference for 
 = 2 p A is less as compared to 
 = 1 p A. This
is because the calcium flushed out by the pump is made up by
influx in case of higher rates of influx. Here the effect of pump
out flux on calcium signaling in myocytes is quite significant for
case II as compared to that in Case I. This is because the out
flux is lower in case I as compared to that in case II.

In Figure 4 the difference in calcium concentration in the cell
without pump in absence and presence of leak increases along
radius r, from 0 to 2.6 �m and then rapidly converges to zero
for both 
 = 1 p A and 
 = 2 p A. The maximum difference
in calcium concentration in absence and presence of leak are
0.015 �M for 
 = 1 p A and 0.005 �M for 
 = 2 p A. The
difference in calcium concentration in absence and presence of
leak is higher at lower source influx. But when the source influx
is higher, it dominates over the influx calcium due to leak. This
implies that leak plays an important role in raising the calcium
concentration in the cell when the source influx is low or zero.

Figure 5 shows the calcium distribution in myocytes without
leak and pump for different values of buffer. It is observed from

Fig. 5. Calcium concentration in absence of leak and pump for different
buffer concentration.

Fig. 6. Calcium concentration in presence of leak without pump for different
buffer concentration.

the result that gap between the curves increases between r =
2.08 �m to r = 6.76 �m which indicates that buffer concentration
have significant effect in lowering calcium concentration in the
cell.
Figure 6 shows calcium distribution in myocytes without

pump, in presence of leak and different values of buffer concen-
tration. The gap between the curves here are less than as those in
Figure 5. This implies that the calcium influx due to leak raises
the [Ca2+] to balance the effect of buffer concentration and vice
versa.
Figure 7 shows the calcium distribution in presence of pump

and in absence of leak for case I and different values of buffer
concentration. The fall in [Ca2+] in cell is more for higher values
buffer. The gap between the curves indicates that the effect of
buffer concentration on has significant effect on calcium distri-
bution in myocytes is very small in presence of pump.
Figure 8 shows the calcium distribution in presence of pump

for case II and different values of buffer. The fall in [Ca2+] in
the cell is more for higher values of buffer. The gap between

Fig. 7. Calcium concentration in presence of pump without leak in case I
for different buffer concentration.
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Fig. 8. Calcium concentration in presence of pump without leak in case II
for different buffers.

the curves indicates the buffer has a very small effect on Ca2+

distribution in myocytes in presence of pump. The gaps between
the curves here are more as compared to case I in Figure 7. This
implies that the effect of buffer for case II as compared to that
for case I is more significant. This is due to the fact that the rate
constant of the pump is higher in case II leading to fall in [Ca2+].
The combined effect of pump and buffers is quite significant in
lowering down [Ca2+] in the cell. Further the out flux due to
pump dominates over the effect of buffers on calcium signaling
in myocytes.

4. CONCLUSION
A finite element model of calcium signaling in myocytes involv-
ing leak, pump and excess buffer have been proposed for a
one dimensional steady state case. The model gives us interest-
ing relationship of calcium concentration in myocytes with the
parameters like source influx, buffers, leak and pump. The results
indicate that the pump and buffer have significant role in low-
ering the [Ca2+] in myocytes cell while leak play an important
role in raising the [Ca2+] levels in myocytes cell. From the above
results it can be concluded that the myocytes cell has a beauti-
ful mechanism involving well coordinated effect of parameters
like source influx, leak, buffer and pump in regulating the [Ca2+]
required for maintaining the structure and function of the cell.

The finite element approach used here is quite versatile as it gives
us flexibility to incorporate important parameters in the model.
Such models can be developed further to generate information
of calcium signaling in myocytes required for contraction and
expansion of myocytes which is responsible for circulation of
blood in the body. It can be of great use to biomedical scientist
for developing protocols for diagnosis and treatment of diseases
related to heart.
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