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Abstract The calcium signaling plays a crucial role in expansion and contraction of cardiac myo-

cytes. This calcium signaling is achieved by calcium diffusion, buffering mechanisms and influx in

cardiac myocytes. The various calcium distribution patterns required for achieving calcium signal-

ing in myocytes are still not well understood. In this paper an attempt has been made to develop a

model of calcium distribution in myocytes incorporating diffusion of calcium, point source and

excess buffer approximation. The model has been developed for a two dimensional unsteady state

case. Appropriate boundary conditions and initial condition have been framed. The finite element

method has been employed to obtain the solution. The numerical results have been used to study

the effect of buffers and source amplitude on calcium distribution in myocytes.
� 2015 Alexandria University Faculty of Medicine. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Heart is responsible for circulation of blood which is essential

for life and functioning of different organs in human body.
The functioning of heart is achieved through expansion and
contraction of cardiac myocytes. This expansion and contrac-

tion of myocytes is responsible for pumping of blood from
heart to arteries.1,2 In order to understand the function of
heart it is of crucial interest to understand the processes

involved in cardiac myocytes. The various processes involved
in spatiotemporal calcium dynamics required for the initiation,
termination and sustenance of the activity of the cell are not

well understood. Thus there is a need to study the calcium
dynamics in cardiac myocytes along with its constituent
processes.

Chemical reaction and diffusion are central to quantitative

computational biology. Ca2+ ions diffuse away from the
mouth of voltage gated plasma membrane through Ca2+

channels into the cytosolic domain.1 This domain contains

Ca2+ binding proteins (Troponin-C). By binding and releasing
free Ca2+, endogenous Ca2+ binding proteins and other
‘‘Ca2+ buffers” determine the range of action of Ca2+ ions

that influence the time course of their effect and facilitate clear-
ance of Ca2+.1,2 The intracellular binding proteins bind with
calcium ion which results in the contraction of cardiac myo-

cytes. The separation of bonded proteins from calcium ion
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results in the expansion of cardiac myocytes. The balance of
calcium ion is maintained by diffusion of calcium, source
influx and buffering mechanism.1,2

Attempts are reported in the literature for the study of cal-
cium regulation in neuron cell, astrocyte cell, fibroblast cell,
oocyte cell, acinar, etc.3–19 But very few attempts are reported

in the literature for the study of calcium dynamics in
myocytes.1,2,20,21 Most of the studies reported on calcium dif-
fusion in myocytes are experimental.22–24 In the present paper

an attempt has been made to propose a model for calcium
dynamics in cardiac myocytes in the presence of excess buffers
for a two dimensional unsteady state case. The finite element
method has been employed to obtain the solution. The effects

of the parameters such as source influx and buffers on the cal-
cium distribution in myocytes have been studied with the help
of numerical results.

2. Mathematical formulations

By assuming a bimolecular association reaction between Ca2+

and buffer, we have1

Ca2þ þ B ()k
þ

k�
CaB ð1Þ

In Eq. (1), B represents free buffer, and CaB represents Ca2+

bound buffer. k+ and k� are association and dissociation rate

constants, respectively. If it is further assumed that the reac-
tion of Ca2+ with buffer follows mass action kinetics, then
the system of ODEs for the change in concentration of each

species is given by1,2

@½Ca2þ�
@t

¼ Rþ J ð2Þ
@½B�
@t

¼ R ð3Þ
@½CaB�

@t
¼ �R ð4Þ

where the common reaction term R, is given by

R ¼ �kþ½Ca2þ�½B� þ k�½CaB� ð5Þ
and J represents Ca2+ influx. Both R and J have units of con-
centration per unit time. Eqs. (2)–(5) are extended to include

multiple buffers and the diffusive movement of free Ca2+,
Ca2+ bound buffer and Ca2+ free buffer. Assuming, Fick’s
diffusion in a homogeneous, isotropic medium, the system of

reaction diffusion equations can be written as1,2

@½Ca2þ�
@t

¼ DCar2½Ca2þ� þ
X
i

Ri þ J ð6Þ

@½Bi�
@t

¼ DBi
r2½Bi� þ Ri ð7Þ

@½CaBi�
@t

¼ DCaBi
r2½CaBi� � Ri ð8Þ

where the reaction term, Ri is given by

Ri ¼ �kþi ½Ca2þ�½Bi� þ k�i ½CaBi� ð9Þ
Here i is an index over Ca2+ buffers. DCa;DBi

; andDCaBi
are

diffusion coefficients of free Ca2+, bound calcium and free
buffer respectively.

Since Ca2+ has a molecular weight that is small in compar-
ison with most Ca2+ binding species, the diffusion constant of
each mobile buffer is not affected by the binding of Ca2+ that
is DBi

¼ DCABi
¼ Di.

1,2 Substituting this in Eqs. (7) and (8) and

on summation it gives

@½Bi�T
@t

¼ @½CaBi�
@t

þ @½Bi�
@t

¼ Dir2½CaBi� þDir2½Bi�
¼ Dir2½Bi�T ð10Þ

And

Ri ¼ �kþi ½Ca2þ�½Bi� þ k�i ð½Bi�T � ½Bi�Þ ð11Þ
where

½Bi�T ¼ ½CaBi� þ ½Bi� ð12Þ
Thus, [Bi]T, profiles are initially uniform and there are no
sources or sinks for Ca2+ buffer, and [Bi]T remains uniform

for all times.1,2 Thus, the following equations can be written
for the diffusion of Ca2+:

@½Ca2þ�
@t

¼ DCar2½Ca2þ� þ
X
i

Ri þ J ð13Þ

@½Bi�
@t

¼ Dir2½Bi� þ Ri ð14Þ

where

Ri ¼ �kþi ½Ca2þ�½Bi� þ k�i ð½Bi�T � ½Bi�Þ ð15Þ
In the excess buffer approximation (EBA), Eqs. (6)–(8) are

simplified by assuming that the concentration of free Ca2+

buffer [Bi], is high enough such that its loss is negligible. The
EBA gets its name because this assumption of the unsaturabil-
ity of Ca2+ buffer is likely to be valid when Ca2+ buffer is in

excess.7

The association and dissociation rate constants for the
bimolecular association reaction between Ca2+ and buffer

can be combined to obtain a dissociation constant, Ki as
follows:

Ki ¼ k�i =k
þ
i ð16Þ

This dissociation constant of the buffer has units of lM and
is the concentration of Ca2+ which is necessary to cause 50%

of the buffer to be in Ca2+ bound form. To show this consider
the steady state of Eqs. (6)–(8) in the absence of influx (J = 0).
Setting the left hand sides of Eqs. (7) and (8) to zero gives7

½Bi�1 ¼ Ki½Bi�T
Ki þ ½Ca2þ�1

ð17Þ

and

½CaBi�1 ¼ ½Ca2þ�1½Bi�T
Ki þ ½Ca2þ�1

ð18Þ

where [Ca2+]1 is the ‘‘background” or ambient free Ca2+ con-
centration. And [Bi]1 and [CaBi]1 are the equilibrium concen-

trations of free and bound buffer with respect to index i. In this
expression Ki is the dissociation rate constant of buffer i. Note
that higher values for Ki imply that the buffer has a lower

affinity for Ca2+ and is less easily saturated. In this case, the
equation for the diffusion of Ca2+ becomes

@½Ca2þ�
@t

¼DCar2½Ca2þ��
X
i

kþi ½Bi�1 ½Ca2þ�� ½Ca2þ�1
� � ð19Þ
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To complete a reaction–diffusion formulation for the buf-
fered diffusion of Ca2+, a particular geometry of simulation
must be specified and Eq. (19) must supplement with boundary

conditions. If Ca2+ is released from intracellular Ca2+ stores
deep within a large cell (so that the plasma membrane is far
away and does not influence the time course of the event),

and the intracellular milieu is homogenous and isotropic, then
it has cylindrical symmetry.1 In this case the evolving profiles
of Ca2+ and buffer will be a function of r and h only. For a

two dimensional unsteady state case the Eq. (19) in polar cylin-
drical coordinates in the absence of influx (J = 0) is given by

1

r

@

@r
r
@½Ca2þ�

@r

� �
þ 1

r2
@2½Ca2þ�

@h2
� kþ½B�1

DCa

ð½Ca2þ� � ½Ca2þ�1Þ

¼ 1

DCa

@½Ca2þ�
@t

ð20Þ

The reasonable boundary condition for this simulation is

uniform background Ca2+ profile of [Ca2+]1 = 0.1 lM. It
is required that buffer far from the source to remain in equilib-
rium with Ca2+ at all times. Thus the boundary condition on

the boundary away from the source is given by1,2,17

lim
r!1;h!0

½Ca2þ� ¼ ½Ca2þ�1 ð21Þ

At the source, it is assumed that influx takes place and
therefore the boundary condition is expressed as1,2,17

lim
r!1;h!p

�2pDCar
@½Ca2þ�

@r

� �
¼ rCa ð22Þ

We define an influx of free Ca2+ at the rate rCa by Fara-

day’s law, rCa ¼ ICa
zF

where ICa is amplitude of elemental

Ca2+ release, F is Faraday’s constant and Z is valence of

Ca2+.1,2,17

The initial concentration at t= 0 s is taken as 0.1 lM. i.e.

lim
t!0

½Ca2þ� ¼ 0:1 lM ð23Þ

Hence, the problem reduces to find the solution of Eq. (20)
with respect to the boundary conditions (21) and (22) and ini-

tial condition (23). Here, [Ca2+]1 is the background calcium
concentration, [B]1 is the total buffer concentration, and rCa
represents the flux. [Ca2+] achieves its background concentra-

tion 0.1 lM as r tends to 1 and h tends to p. But the domain
taken here is not infinite but finite one. Here, the distance is
taken as required for [Ca2+] to attain background concentra-
Figure 1 Finite element discretization of circular cell.
tion as 7.8 lm for the cardiac myocytes (i.e. radius of the car-
diac myocytes).10 Now the finite element method is employed
to solve Eq. (20) with boundary conditions (21) and (22) and

initial condition (23).
Assuming that the cardiac myocytes are of circular shape, it

is divided into sixteen coaxial circular elements, as shown in

Fig. 1.
Here the number in square represents the number of ele-

ments and member without square represents the nodal points

where the nodal point (7.8, p) represents point source of cal-
cium. The following table represents the element information
(see Table 1).

The discretized variational form of Eq. (20) is given by

IðeÞ ¼ 1
2

R rj
ri

R hj
hi

r @yðeÞ
@r

� �2

þ 1
r

@yðeÞ
@h

� �2
� �� 	

dr dh

þ 1
2

R rj
ri

R hj
hi

kþ½B�1
DCa

ryðeÞ
2 � 2kþ½B�1

DCa
y1y

ðeÞr
h i

dr dh

1
2

R rj
ri

R hj
hi

r
DCa

@yðeÞ2

@t

h i
dr dh� R hj

hi
rCa

2pDCa
ryðeÞ

h i
dh

ð24Þ

Here, ‘y’ is used in lieu of [Ca2+] for our convenience, e = 1,
2, . . . , 16.

The following bilinear shape function for the calcium con-
centration within each element has been taken as

yðeÞ ¼ C
ðeÞ
1 þ C

ðeÞ
2 rþ C

ðeÞ
3 hþ C

ðeÞ
4 rh ð25Þ

In matrix form the Eq. (25) can be written as

yðeÞ ¼ PTCðeÞ ð26Þ
where

PT ¼ ½1 r h rh� and CðeÞ ¼

C
ðeÞ
1

C
ðeÞ
2

C
ðeÞ
3

C
ðeÞ
4

2
66664

3
77775

Also

y
ðeÞ
i ¼ C

ðeÞ
1 þ C

ðeÞ
2 ri þ C

ðeÞ
3 hi þ C

ðeÞ
4 rihi ð27Þ

y
ðeÞ
j ¼ C

ðeÞ
1 þ C

ðeÞ
2 rj þ C

ðeÞ
3 hj þ C

ðeÞ
4 rjhj ð28Þ

y
ðeÞ
k ¼ C

ðeÞ
1 þ C

ðeÞ
2 rk þ C

ðeÞ
3 hk þ C

ðeÞ
4 rkhk ð29Þ

y
ðeÞ
l ¼ C

ðeÞ
1 þ C

ðeÞ
2 rl þ C

ðeÞ
3 hl þ C

ðeÞ
4 rlhl ð30Þ

Using Eqs. (27)–(30) we get

�yðeÞ ¼ PðeÞCðeÞ ð31Þ
where

PðeÞ ¼

1 ri hi rihi
1 rj hj rjhj
1 rk hk rkhk
1 rl hl rlhl

2
6664

3
7775 and �yðeÞ ¼

y
ðeÞ
i

y
ðeÞ
j

y
ðeÞ
k

y
ðeÞ
l

2
666664

3
777775

From Eqs. (26) and (31) we get

yðeÞ ¼ PTRðeÞ�yðeÞ ð32Þ
where R(e) = P(e)�1.

Now the integral given in Eq. (24) can also be written as,



Table 1 Element information.

e i j k l

1 1 2 4 5

2 2 3 5 6

3 4 5 7 8

4 5 6 8 9

5 7 8 10 11

6 8 9 11 12

7 10 11 13 14

8 11 12 14 15

9 13 14 16 17

10 14 15 17 18

11 16 17 19 20

12 17 18 20 21

13 19 20 22 23

14 20 21 23 24

15 22 23 1 2

16 23 24 2 3

Table 2 Numerical values of biophysical parameters.10

R Radius of the cell 7.8 lm
ICa Amplitude of elemental Ca2+ release 1 pA

F Faraday’s constant 6500 C/mol

Z Valence of Ca2+ ion 2

DCa Diffusion coefficient of free Ca2+ in cytosol

for Troponin C

780 lm2/s

[B1]T Total concentration for each Ca2+ buffer of

Troponin C

70 lM

k+ Association rate constant for Ca2+ binding

of Troponin C

39 lM�1 s�1

k� Dissociation rate constant for Ca2+ binding

of Troponin C

20 s�1

K Dissociation constant of Troponin C ¼ k�1
kþ1

0.51 lM

[Ca]1 Intracellular free Ca2+ concentration at rest 0.1 lM

Figure 2 Spatiotemporal calcium distribution
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IðeÞ ¼1

2

Z rj

ri

Z hk

hi

r PT
r R

ðeÞ�yðeÞ
� �2þ1

r
ðPT

hR
ðeÞ�yðeÞÞ2

� 	
dr dh

þ1

2

Z rj

ri

Z hk

hi

kþ½B�1
DCa

rðPTRðeÞ�yðeÞÞ2
� 	

dr dh

�1

2

Z rj

ri

Z hk

hi

2kþ½B�1
DCa

u1rðPTRðeÞ�yðeÞÞ
� 	

dr dh

1

2

Z rj

ri

Z hk

hi

r

DCa

@

@t
ðPTRðeÞ�yðeÞÞ2

� 	
dr dh�

Z hk

hi

rCa

2pDCa

r�yðeÞ
� 	

dh

ð33Þ

Now I(e) is minimized with respect to �yðeÞ, and we have

dIðeÞ

d�yðeÞ
¼ 0 ð34Þ

where

�yðeÞ ¼ yi yj yk yl

 �T

; e ¼ ð1; 2; . . . ; 16Þ
and

dI

d�yðeÞ
¼

XN
e¼1

�MðeÞ dI
ðeÞ

d�yðeÞ
�MðeÞT ð35Þ

�MðeÞ ¼

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

� � � �
0 0 0 0

2
666666666664

3
777777777775

ð24�4Þ

ðith rowÞ
ðjth rowÞ
ðkthrowÞ
ðlth rowÞ

and I ¼
X16
e¼1

IðeÞ

This leads to following system of linear algebraic equations:

½A�ð24�24Þ
d

dt
½�y�ð24�1Þ þ ½B�ð24�24Þ½�y�ð24�1Þ ¼ ½C�ð24�1Þ ð36Þ

Here, �y ¼ ½y1 y2 � � � y24�T, A and B are system matrices

and C is characteristic vector. Crank Nicolson method is
employed to solve the system (35).
at time t= 0.001, 0.002, 0.003 and 0.004 s.



Figure 3 Spatiotemporal calcium distribution at different nodes 15, 12, 9 and 6.
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3. Results and discussion

A computer program in MATLAB 7.10.0.4 is developed to
find numerical solution to the entire problem. The time taken
for simulation is nearly 8.81 s on Core (TM) i 5-520 M 330 @
2.40 GHz processing speed and 4 GB memory. To find the

solution of equation (3.2.10) the biophysical parameters are
taken from the literature as shown in Table 2.

In Fig. 2(a)–(d) it is observed that the calcium concentration

is maximum at the source and it decreases as moving away
from the source along radial and angular directions. The
changes in peak calcium concentration at source with respect

to time and calcium concentration at nodes far away from
the source along angular and radial directions are plotted in
Fig. 3.

In Fig. 3 it can be seen that at the source (node 15:

r= 7.8 lm, h = p), the calcium concentration increases from
0.1 to 0.131 lM in time t= 0.001 s. This elevation in
calcium profile is due to the source influx. Then the calcium

concentration is decreased to 0.1245 lM at the source at time
Figure 4 Spatiotemporal calcium distribu
t= 0.002 s. This is due to the buffering process. The buffer

binds the calcium ion to reduce the free calcium concentration.
Again some elevation in calcium concentration is observed at
t= 0.003 s due to influx. This increase and decrease in calcium

concentration at the source and other nodes (node 12: node 15:
r= 7.8 lm, h = 3p/4, node 9: r = 7.8 lm, h = p/2, node 6:
r= 7.8 lm, h = p/4) are observed up to 0.004 s and then
thereafter the calcium concentration becomes stable and con-

stant. Thus the system achieves steady state in 0.004 s. The
variation in calcium concentration is highest at source and it
decreases as moving away from the source. This variation in

calcium concentration at the source is observed due to mis-
match among influx, buffering and diffusion of calcium in
the cell. When the system achieves coordination of these pro-

cesses the system reaches it steady state.
Fig. 4 shows the spatiotemporal calcium concentrations for

different source influxes 1 pA, 2 pA and 3 pA at time t = 0.001
s. It is observed that the calcium concentrations increase in

ratio of source influx. It is also observed that the oscillation
in concentration is also in the ratios to the source influx. For
tions for influxes 1 pA, 2 pA and 3 pA.



Figure 5 Spatiotemporal calcium distributions for different influxes at nodes (7.8, p) and (7.8, p/2).
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high value of source influx the more oscillation is observed and

it required more time to achieve steady state. The system
achieves steady state condition in time t= 0.005, 0.006 and
0.008 s for influx 1 pA, 2 pA and 3 pA respectively.

Fig. 5 shows the calcium concentrations for different source
influxes 1 pA, 2 pA and 3 pA at nodes (7.8, p) and (7.8, p/2). It
is observed that variation of calcium concentration in the cell

at source and other nodes is more at higher rates of source
influx. The increase in calcium concentration at source and
other nodes is in ratio of source influx. But for node (7.8, p/2)
away from the source the oscillations are less than those at

node (7.8, p). The variation in calcium concentration is highest
at source and it decreases as moving away from the source.
This variation in calcium concentration at the source is

observed due to mismatch among influx, buffering and diffu-
sion of calcium in the cell. This means that near the source
effect of source influx is more as compared to that at nodes

away from the source.
Figure 6 Spatiotemporal calcium distribut
Fig. 6 shows the spatiotemporal calcium concentrations for

different buffer concentrations 50 lM, 100 lM and 150 lM. It
is observed that the calcium concentrations decrease in ratio of
buffer concentrations. It is also observed that the oscillation in

concentration is also in the ratio to the buffer concentrations.
For high value of buffer concentration the more oscillations
are observed. The system achieves steady state condition in

time t= 0.006, 0.007 and 0.008 s for buffer concentrations
of 50 lM, 100 lM and 150 lM respectively.

Fig. 7 shows the calcium concentrations for different buffer
concentrations 50 lM, 100 lM and 150 lM at nodes (7.8, p)
and (7.8, p/2). It is observed that oscillations increase in ratio
of buffer concentrations for both the nodes (7.8, p) and (7.8, p/2).
But for node (7.8, p/2) which is away from the source the oscil-

lations are less as compared to those at node (7.8, p). Hence
oscillations decrease as we moving away from the source. This
means that near the source the effect of buffer is less compared

to that at nodes away from the source.
ions for different buffer concentrations.



Figure 7 Spatiotemporal calcium distribution for different buffer concentrations at nodes.
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4. Conclusions

A finite element model is proposed and employed to study two
dimensional spatiotemporal calcium distributions in cardiac

myocytes involving processes such as influx, buffering and dif-
fusion. The model gives us interesting spatiotemporal calcium
patterns in relation to the multiphysical processes in cell. On

the basis of results it is concluded that the calcium concentra-
tion in the cell increases in ratio of source influx and decreases
in the ratio of buffer concentration. In the initial period of time
the physical processes such as influx and buffering cause oscil-

lation in calcium concentration in the cell until the process
reaches steady state. Thus cardiac myocytes exhibit a beautiful
mechanism of well coordinated effect of multiphysical pro-

cesses such as buffering, diffusion and influx for regulating
the calcium concentration required for maintaining structure
and function of the cell. The finite element approach is quite

versatile in the present condition of the problem as it gives
such flexibility to incorporate theses multiphysical processes
in the model. Such models can be developed further for gener-

ating information of spatiotemporal calcium concentration
patterns required for contraction and expansion of myocytes
which is responsible for blood circulation in the human body.
This information can be useful to biomedical scientist for

developing protocols for diagnosis and treatment of diseases
related to heart. In all it is contribution of new knowledge
and new research progress in the field of computational cell

biology.
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