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The multi physical process involving calcium ions regulate expansion and contraction
of cardiac myocytes. This mechanism of expansion and contraction of cardiac myocytes
is responsible for contraction and expansion of heart for pumping of blood into arteries
and receiving blood into heart from vein. Thus calcium dynamics in cardiac myocytes
is responsible for the activities of the myocytes cells and functioning of the heart. The
specific spatiotemporal calcium ion dynamics is required to trigger, sustain and terminate
activity of the cell. In this paper an attempt has been done to propose a model to
study calcium dynamics in cardiac myocytes for a one-dimensional unsteady state case.
The model incorporates the process like diffusion, reaction involving source and excess
buffers. Appropriate boundary conditions and initial conditions have been framed. The
finite element method has been employed to obtain the solution. The numerical results
have been used to study the effect of buffers and source influx on calcium dynamics in
cardiac myocytes.

Keywords: Reaction diffusion equation; unsteady state; excess buffers; finite element
method.
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1. Introduction

The functioning of heart is achieved through expansion and contraction of cardiac
myocytes. This expansion and contraction of myocytes is responsible for pumping
of blood from heart to arteries.15 In order to understand the function of heart, it
is crucial to understand the multi physical processes involved in cardiac myocytes.
These multi physical processes exert a beautiful coordination to achieve the specific
spatiotemporal calcium dynamics required for the function of cardiac myocytes.
This beautiful coordination of multi physical process and spatiotemporal calcium
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dynamics are still not well understood. Thus there is a need to study the calcium
dynamic in Cardiac Myocytes involving these multi physical process.

Chemical reaction and diffusion are central to quantitative computational biol-
ogy. As Ca2+ ions diffuse away from the mouth of voltage gated plasma membrane
through Ca2+ channels into the cytosolic domain of elevated intracellular Ca2+ ion
activate proteins associated with neurotransmitter release.1 These Ca2+ domain
are formed on the presence of ubiquitous Ca2+ binding proteins (Troponin-C) of
the pre-synaptic terminal. By binding and releasing free Ca2+, endogenous Ca2+

binding proteins and other “Ca2+ buffers” determine the range of action of Ca2+

ions influence the time course of their effect and facilitate clearance of Ca2+1. The
intracellular binding proteins bind with calcium ion which results into the contrac-
tion of cardiac myocytes. They maintain the balance of calcium ions through active
and passive process.16

Attempts are reported in the literature for the study of calcium regulation
in neuron cell, astrocyte cell, fibroblast cell, oocyte cell, etc.3,4,7,9 But very few
attempts are reported in the literature for the study of calcium dynamics in
myocytes.1,5,6,8,12 Most of the studies reported on calcium diffusion in myocytes
are experimental.8,11 In the present paper an attempt has been made to propose a
model for calcium dynamics in cardiac myocytes in the presence of excess buffers
for a one-dimensional unsteady state case. The finite element method has been
employed to obtain the solution. The effects of the parameters like source influx
and buffers on the calcium diffusion in myocytes have been studied with the help
of numerical results.

2. Mathematical Formulation

The calcium kinetics in myocytes is governed by a set of following reaction diffusion
equations12

Ca2+ + Bi
k+⇔
k−

CaBi (1)

where Bi and CaBi are free and bound buffers respectively, and i is an index
over buffer species. k+

i and k−
i are association and dissociation rate constants for i

respectively. Using mass action kinetic law and Fick’s law, the diffusion equations
can be stated as12:

∂[Ca2+]
∂t

= DCa∇2[Ca2+] +
∑

i

Ri (2)

∂[Bi]
∂t

= DBi∇2[Bi] + Ri (3)

∂[CaBi]
∂t

= DCaBi∇2[CaBi] − Ri (4)

Here the reaction terms Ri’s are given by

Ri = −k+
i [Ca2+][Bi] + k−

i [CaBi] (5)
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where DCa, DBi , DCaBi are diffusion coefficients of free calcium, free buffer and
Ca2+ bound buffer respectively.

Since Ca2+ has molecular weight that is small in comparison to most of Ca2+

binding species, the diffusion constant of each mobile buffer is not affected by the
binding of Ca2+ that is DBi = DCaBi = Di. Hence Eqs. (3) and (4) give12

∂[Bi]T
∂t

= Di∇2[Bi]T (6)

and

Ri = −k+
i [Ca2+][Bi] + k−

i ([Bi]T − [Bi]) (7)

where

[Bi]T = [CaBi] + [Bi] (8)

In excess buffer approximation, Eqs. (2)–(5) are simplified by assuming that the
concentration of free Ca2+ buffer is high enough such that its loss is negligible.
There is no sink and source for proteins. The association and dissociation rate
constants for the bimolecular association reaction between Ca2+ and buffer can be
combined to obtain a dissociation constant Ki,12

Ki = k−
i /k+

i (9)

The dissociation constant of the buffer has units of µM and the concentration
of Ca2+ is necessary to cause 50% of the buffer to be in the Ca2+ bound form.
Considering the steady state of Eqs. (2)–(4) in the absence of influx gives15

[Bi]∞ =
Ki[Bi]T

Ki + [Ca2+]∞
(10)

and

[CaBi]∞ =
[Ca2+]∞[Bi]T
Ki + [Ca2+]∞

(11)

where [Ca2+]∞ is the “background” or ambient free Ca2+ concentration, and [Bi]∞
and [CaBi]∞ are the equilibrium concentrations of free and bound buffer with
respect to index i. The equation of calcium diffusion becomes15

∂[Ca2+]
∂t

= DCa∇2[Ca2+]

−
∑

i

k+
i [Bi]∞([Ca2+] − [Ca2+]∞) (12)
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The expression (12) for a one dimensional unsteady state case in polar coordinates
for individual buffer is given by16

1
DCa

∂[Ca2+]
∂t

=
1
r

d

dr

(
r
d[Ca2+]

dr

)

− k+[B]∞
DCa

([Ca2+] − [Ca2+]∞) (13)

The point source of calcium is assumed at r = 0 µm. Thus the appropriate boundary
condition can be taken as13

lim
r→0

(
−2πDCar

∂[Ca2+]
∂r

)
= σCa (14)

Here an influx of free Ca2+ is taken at the rate σCa by Faraday’s law, σCa = ICa
zF .13

It is assumed that background concentration of Ca2+ is 0.1µM is maintained at a
position and as it goes far away from the source. The radial distance is considered
as finite one i.e., radius of the cell and thus the boundary condition is given by13

lim
r→7.8

[Ca2+] = [Ca2+]∞ = 0.1 µM (15)

The initial concentration at t = 0 s is taken as 0.1µM. i.e.,

lim
t→0

[Ca2+] = 0.1 µM (16)

The one dimensional finite element discretization is given by Fig. 1.
Now the finite element method is employed to solve Eq. (13) with boundary

conditions (14) and (15). The discretized variational form of Eq. (13) is given by

I(e) =
1
2

∫ rj

ri

[J (e)
1 + J

(e)
2 − J

(e)
3 + J

(e)
4 ]dr −

[
σCa

2πDCa
u(e)

]rj

ri

(17)

Fig. 1. One dimensional spatial discretization. Here ei denotes the ith element. And ri and ri+1

denote initial and terminal nodes of ith element.
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where

J
(e)
1 = r

(
∂u(e)

∂r

)2

J
(e)
2 =

k+[B]∞
DCa

ru(e)2

J
(e)
3 =

2k+[B]∞
DCa

u∞u(e)r

J
(e)
4 =

r

DCa

(
∂u(e)

∂t

)2

Here, ‘u’ is used in lieu of [Ca2+] for our convenience, e = 1, 2, . . . , N .
The thickness of each element is very small, therefore u(e) is assigned linear

variation with respect to position as given by

u(e) = C1 + C2r (18)

In matrix form Eq. (18) can be written as

u(e) = PT C(e) (19)

where

PT =
[
1 r

]
and C(e) =

[
C1

C2

]

Also

u(e)(ri) = ui = C1 + C2ri (20)

u(e)(rj) = uj = C1 + C2rj (21)

Using Eqs. (19)–(21) we get

ū(e) = P (e)C(e) (22)

Where

P (e) =

[
1 ri

1 rj

]
and ū(e) =

[
ui

uj

]

From Eqs. (19) and (22) we get

u(e) = PT R(e)ū(e) (23)

where

R(e) = P (e)−1 =
1

rj − ri

[
rj ri

1 1

]
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and ri and rj are the boundaries of eth element. Now the integral given in Eq. (17)
can also be written as,

I(e) =
1
2

∫ rj

ri

r[I(e)
1 + I

(e)
2 + I

(e)
3 + I

(e)
4 ]dr −

[
σCa

2πDCa
ū(e)

]
e=1

(24)

where

I
(e)
1 = (PT

r R(e)ū(e))2,

I
(e)
2 =

k+[B]∞
DCa

(PT R(e)ū(e))2

I
(e)
3 =

−2k+[B]∞
DCa

u∞(PT R(e)ū(e))

I
(e)
4 =

1
DCa

∂

∂t
(PT R(e)ū(e))2

Now I(e) is minimized with respect to ū(e)

dI(e)

dū(e)
= 0

where

ū(e) = [ui uj ]T , e = (1, 2, . . . , N)

dI

dū(e)
=

N∑
e=1

M̄ (e) dI(e)

dū(e)
M̄ (e)T

M̄ (e) =




0 0

1 0

0 1

• •
0 0




(16×2)

(ith row)

((i + 1)th row)
and I =

15∑
e=1

I(e)

This leads to following system of linear algebraic equations

[A](16×16)
d

dt
[ū](16×1) + [B](16×16)[ū](16×1) = [C](16×1) (25)

Here, ū = [u1 u2 • • • uN+1]T , A and B are system matrices and C is
characteristic vector. Crank Nicolson method is employed to solve the system (25).
A computer program has been developed in MATLAB 7.10 for the entire problem
and simulated on Core i5 processor with 2.40 GHz processing speed, 64-bit machine
with 320 GB memory.
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3. Numerical Results and Discussion

The biophysical parameters used for the computation of numerical results are given
in Table 1.

Figure 2 shows the concentration of calcium along radial direction at different
points of time. It is observed that after 1 s the concentration of calcium decreases
rapidly as we are moving away from the source from r = 0 µm to r = 1.56µm.
Then it approaches to its background concentration 0.1µM at r = 2.54µm and
remains constant thereafter. Due to buffering process the concentration of calcium
drops rapidly initially and then after it approaches to its background concentration.
The same behavior is observed after 2 s and 3 s. It is also observed that at t = 2 s
the calcium concentration rapidly decreases as compared to that at t = 3 s. As

Table 1. Numerical values of biophysical parameters.8

R Radius of the cell 7.8 µm
ICa Amplitude of elemental Ca2+ release 1 pA
F Faraday’s constant 96,500 C/mol
Z Valence of Ca2+ ion 2
DCa Diffusion coefficient of free Ca2+ in cytosol for Troponin C 780 µm2/s
[B1]T Total concentration for each Ca2+ buffer of Troponin C 70 µM
k+ Association rate constant for Ca2+ binding of Troponin C 39 µM−1S−1

k− Dissociation rate constant for Ca2+ binding of Troponin C 20 S−1

K Dissociation constant of Troponin C =
k−
1

k+
1

, 0.51 µM

[Ca]∞ Intracellular free Ca2+ concentration at rest 0.1µM

Fig. 2. Calcium concentration along radial direction at different points of time.
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Fig. 3. Calcium concentration along radial direction for different values of source influx at t = 2 s.

distant increases the calcium concentration achieves its background concentration
after r = 3µm.

Figure 3 shows the calcium concentration at t = 2 s for different rates of source
influx 1 pA, 2 pA and 3pA along radial direction. It is observed that the concentra-
tion of calcium is decreases rapidly from r = 0µm to r = 1.56µm and approaches to
its background concentration at r = 2.54µm for source influx 1 pA, 2 pA and 3pA.
It is also observed that for higher values of source influx the concentration decreases
more rapidly compare to low values of source influx. Excess buffer reduce the con-
centration of calcium at higher values of source influx more rapidly by buffering
process. Further the calcium concentration at the source is higher for higher rates
of influx and this increase in calcium concentration at source is in the ratio of rates
of source influx.

Figure 4 shows the calcium concentration at t = 2 s for different buffer con-
centrations 50µM, 100µM and 200µM along radial direction. It is observed that
the concentration of calcium decreases rapidly from r = 0µm to r = 1.56µm and
approaches to its background concentration at r = 2.54µm for different buffer
concentration. It is also observed that for higher values of buffer the calcium con-
centration decreases more rapidly as compared to that for the low values of buffer.

Figure 5 shows calcium concentration along space and time. The results are
obtained for t = 1, 2 and 4 s and for r = 0, 0.78, 1.56, 2.34 and 3.12µm. It is observed
that at r = 0µm the concentration increases from 0.1µM to 0.24µM in one second
and remain constant for ever due to boundary condition at r = 0µm. The con-
centration at r = 3.12µm increases with time due to calcium diffusion and there
after that it approaches to back ground concentration 0.1µM as time increases. As
we are moving away from the source the very small changes in concentration are
observed as time increases. A significant effect of buffer is observed at initial stage.
As time increases the effect of buffer is not significant.
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Fig. 4. Calcium concentration along radial direction for different buffer values at t = 2 s.

Fig. 5. Spatiotemporal calcium distribution for σ = 1pA and [B] = 70 µM.

Figure 6 shows calcium concentration along time for buffer concentrations
50µM, 100µM and 200µM at r = 0.78µm. At buffer concentration 50µM it is
observed that calcium concentration increases from 0.1µM at t = 0 s to 0.1311µM
at t = 1 s due to source influx. The concentration of calcium there after decreases
from 0.1311µM from 0.116µM in a second due to presence of buffers and calcium
diffusion. Again the concentration of calcium is increases slightly to 0.1247µM in a
second due to calcium diffusion and decreases to 0.1192µM in a second. The effect
of buffer and diffusion of calcium concentration near the source initially causes
oscillations in calcium concentration profiles from t = 0 s to t = 4 s and thereafter
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Fig. 6. Calcium concentrations along time for different buffer concentration at r = 0.78 µm.

the oscillations disappear indicating that the source influx, buffers and diffusion
process have achieved equilibrium or steady state. Similar effect is observed for
buffer concentration 100µM and 200µM, but the difference is of less magnitude of
oscillations of calcium concentration in the cell. The peak calcium concentration
is lower for higher buffer concentration. This is due to the fact that the higher
buffer concentration binds more calcium to reduce the availability of free calcium
concentration in the cell.

Figure 7 shows calcium concentration along time for source influxes 1PA, 2PA
and 3 PA at r = 0.78µm. At source influx 1 PA it is observed that calcium concen-
tration increases from 0.1µM at t = 0 s to 0.1186µM at t = 1 s due to source influx.
The concentration of calcium then after decreases from 0.1186µM to 0.1084µM in
a second due to presence of buffers. Again the concentration of calcium is increases
to 0.1146µM in a second due to influx and calcium diffusion and decreases to

Fig. 7. Calcium concentrations along time for different source influx at r = 0.78 µm.
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0.1106µM in a second. Similar behavior is observed for higher values of source
influx with difference in magnitude of oscillations. It is observed that the peak
value of calcium concentration is higher for higher values of influx and is in ratio
of the value of the source influx. The source influx has significant effect on cal-
cium concentration profile in the cell. The oscillation of calcium concentration go
on decreasing t = 0 s to t = 4 s and finally disappeared after t = 5 s. This is due
to the steady state achieved by equilibrium of source influx, buffering and diffusion
process taking place in the cell in t = 5 s.

4. Conclusion

A finite element model is proposed and employed to study one-dimensional
spatiotemporal calcium distribution in cardiac myocytes involving multi physical
process like influx, buffering and diffusion. The model gives us interesting spa-
tiotemporal calcium patterns in relation to the multi physical processes in cell.
On the basis of results it is concluded that the calcium concentration in the cell
increases in ration of source influx and decreases in the ratio of buffer concentration.
In the initial period of time the physical process like influx and buffering causes
oscillation in calcium concentration in the cell until the process reached equilibrium
state. Thus cardiac myocytes exhibits a beautiful mechanism of well-coordinated
effect of multi physical processes like buffering, diffusion and influx. Thus regulat-
ing the calcium concentration required for structure and function of the cell. The
finite element approach is quite versatile in the present condition of the problem as
it gives such flexibility to incorporate theses multi physical process in the model.
Such models can be developed further for generating information of spatiotemporal
calcium patterns required for contraction and expansion of myocytes which in term
is responsible for blood circulation in the body of human. This information can be
useful to biomedical scientist for developing protocols for diagnosis and treatment
of diseases related to heart. In all it is contribution of new knowledge and new
research progression in the field of computational biology.
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