Intuitionistic Fuzzy Relations over Intuitionistic Fuzzy Sets

Motilal Panigrahi* and Sudarsan Nanda
Department of Mathematics, Indian Institute of Technology, Kharagpur-721302, West Bengal, INDIA
E-mail: motilal.panigrahi@gmail.com
snanda@maths.iitkgp.ernet.in

Abstract

: In this paper we have defined intuitionistic fuzzy relation from an intuitionistic fuzzy set to another intuitionistic fuzzy set. Defined some operations on these intuitinsitic fuzzy relations and studied some properties.

Key words:
Fuzzy sets, intuitionsitic fuzzy sets.

1. Introduction

Since the advent of fuzzy set theory by the pioneer Zadeh [10] in 1965, a lot of research has progressed in fuzzy relation. For a good overview of the theory of fuzzy relation, we refer the reader to Kaufmann [8]. After the introduction of fuzzy set theory many authors have generalized further and concepts like vague sets, rough sets and soft sets etc. have come. Atanassov [1,2,4] introduced the concept of intuitionitic fuzzy sets (IFS). He also developed intuitionistic fuzzy relation in [1]. Burillo-Bustince [6] have discussed more on intuitionitic fuzzy relations using t-norms and t-conorms. In classical set theory, a relation is defined between elements of two sets. Thus a relation in classical sense defines the "presence or absence" of a connection (or association) between the elements of two sets. A fuzzy relation [10] is usually defined as a fuzzy set on the Cartesian product of two sets. Thus for X and Y two ordinary sets a fuzzy relation R is defined as a fuzzy set on $X \times Y$. That is, R defines how strongly (or weakly) a pair $(a, b) \in X \times Y$ is related. However, if A and B are two fuzzy subsets of X (i.e. A and B are maps from X to [0,1]), then one can define a fuzzy relation between A and B (see Chakraborty-Das [7]).

[^0]By taking motivations from [7], in this paper we have defined an intuitionsitic fuzzy relation between intuitionistic fuzzy subsets defined on a universal set. Based on this, in Section 3 we define some of the operations on intuitionsitic fuzzy relations and we study their properties. We prove (in Theorem 3.6, Theorem 3.9) that some results which are true in case of $I F S$ are not true in case of intuitionistic fuzzy relations over intuitionistic fuzzy subsets. In Section 4 the composition of intuitionsitic fuzzy relations are defined. Elie Sanchez [9] has provided a methodology for certain basic fuzzy relational equations. We propose the corresponding problem of resolving an intuitionistic fuzzy relation equations. In Section 5 we have discussed the extension principle in this context. Finally in Section 6 we study the reflexivity, symmetry and transitivity in intuitionsitic fuzzy relations.

2. Preliminaries

Let X be a nonempty set. Then a fuzzy subset A of X is nothing but a function $\mu_{A}: X \rightarrow[0,1]$, called a membership function, whereas an Intuitionistic Fuzzy Set (IFS) A on X is an object of the from

$$
\begin{equation*}
A=\left\{\left\langle x, \mu_{A}(x), v_{A}(x)\right\rangle \mid x \in X\right\} \tag{1}
\end{equation*}
$$

where the functions $\mu_{A}: X \rightarrow[0,1]$ and $v_{A}: X \rightarrow[0,1]$ satisfy the rule

$$
\begin{equation*}
\mu_{A}(x)+v_{A}(x) \leq 1 \forall x \in X \tag{2}
\end{equation*}
$$

called the intuitionistic condition (IC).
The numbers $\mu_{A}(x)$ and $v_{A}(x)$ are respectively called the degree of membership and degree ofnonmembership of the element x in the intuitionistic fuzzy set A. We denote the set of all intuitionistic fuzzy sets on X by $\operatorname{IFS}(X)$ henceforth, if there is no confusion, an intuitionistic fuzzy set $A \in \operatorname{IFS}(X)$ will be denoted as a pair $\left(\mu_{A}, v_{A}\right)$.

Definition 2.1. For every two $I F S s$ [2] A and B on X, we define
(1) $A \subseteq B$ iff $(\forall x \in X)\left(\mu_{A}(x) \leq \mu_{B}(x)\right.$ and $\left.v_{A}(x) \geq v_{B}(x)\right)$,
(2) $A=B$ iff $A \subseteq B$ and $B \subseteq A$,
(3) $\bar{A}=\left\{\left\langle x, v_{A}(x), \mu_{A}(x)\right\rangle \mid x \in X\right\}$,
(4) $A \cap B=\left\{\left\langle x, \min \left(\mu_{A}(x), \mu_{B}(x)\right), \max \left(v_{A}(x), v_{B}(x)\right)\right\rangle \mid x \in X\right\}$,
(5) $A \cup B=\left\{\left\langle x, \max \left(\mu_{A}(x), \mu_{B}(x)\right), \min \left(v_{A}(x), v_{B}(x)\right)\right\rangle \mid x \in X\right\}$,
(6) $\square A=\left\{\left\langle x, \mu_{A}(x), 1-\mu_{A}(x)\right\rangle \mid x \in X\right\}$,
(7) $\diamond A=\left\{\left\langle x, 1-v_{A}(x), v_{A}(x)\right\rangle \mid x \in X\right\}$.

3. Intuitionistic fuzzy relations over intuitionistic fuzzy sets

Definition 3.1. Let X be the universal set and $A=\left(\mu_{A}, v_{A}\right), B=\left(\mu_{B}, v_{B}\right)$ be two IFSs of X. Define the Cartesian product $A \times B$ as the $I F S$ of $X \times X$ by $A \times B=\left(\mu_{A \times B}, v_{A \times B}\right)$ where for all $x, y \in X$

$$
\mu_{A \times B}(x, y):=\min \left(\mu_{A}(x), \mu_{B}(y)\right), v_{A \times B}(x, y):=\max \left(v_{A}(x), v_{B}(y)\right)
$$

Definition 3.2. Let R be an $I F S$ of $X \times X$ with $R \subseteq A \times B$ i.e., $\forall(x, y) \in X \times X$ (i) $\mu_{R}(x, y) \leq \mu_{A \times B}(x, y)$, (ii) $v_{R}(x, y) \geq v_{A \times B}(x, y)$ and (iii) $\mu_{R}(x, y)+v_{R}(x, y) \leq 1$. Then we say that R is an intuitionsitic fuzzy relation from A to B. In particular, if $A=B$ then R is said to be an intuitionistic fuzzy relation on A.

We denote the set of all intuitionistic fuzzy relations from A to B by $\operatorname{IFR}(A, B)$.
Definition 3.3. Let $R_{1}, R_{2} \in \operatorname{IFR}(A, B)$. Then we say $R_{1} \subseteq R_{2}$ if for all $x, y \in X$, $\mu_{R_{1}}(x, y) \leq \mu_{R_{2}}(x, y)$ and $v_{R_{1}}(x, y) \leq v_{R_{2}}(x, y)$. If $R_{1} \subseteq R_{2}$ and $R_{2} \subseteq R_{1}$ then $R_{1}=R_{2}$.

Note that $R=A \times B$ is the strongest intuitionistic fuzzy relation from A to B. We define various operations on $\operatorname{IFR}(A, B)$.

Definition 3.4. Let R, R_{1}, R_{2} be intuitionistic fuzzy relations from A to B. Then $R_{1} \cup R_{2}, R_{1} \cap R_{2}, R_{1}+R_{2}, R_{1} \cdot R_{2}, R_{1} \uplus R_{2}, R_{1} \cap R_{2}, \bar{R}, R^{-1}, ~ \square R, \nabla R, R_{1} @ R_{2}$, $R_{1} \$ R_{2}, R_{1} \# R_{2}, R_{1} \star R_{2}$ are defined as follows:
(1) $R_{1} \cup R_{2}$:
$\mu_{R_{1} \cup R_{2}}(x, y):=\max \left[\mu_{R_{1}}(x, y), \mu_{R_{2}}(x, y)\right], v_{R_{1} \cup R_{2}}(x, y):=\min \left[v_{R_{1}}(x, y), v_{R_{2}}(x, y)\right]$
(2) $R_{1} \cap R_{2}$:
$\mu_{R_{1} \cap R_{2}}(x, y):=\min \left[\mu_{R_{1}}(x, y), \mu_{R_{2}}(x, y)\right], v_{R_{1} \cap R_{2}}(x, y):=\max \left[v_{R_{1}}(x, y), v_{R_{2}}(x, y)\right]$
(3) $R_{1}+R_{2}$:

$$
\begin{gathered}
\mu_{R_{1}+R_{2}}(x, y):=\mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)-\mu_{R_{1}}(x, y) \cdot \mu_{R_{2}}(x, y), \\
v_{R_{1}+R_{2}}(x, y):=v_{R_{1}}(x, y) \cdot v_{R_{2}}(x, y)
\end{gathered}
$$

(4) $R_{1} \cdot R_{2}$:

$$
\begin{gathered}
\mu_{R_{1} \cdot R_{2}}(x, y):=\mu_{R_{1}}(x, y) \cdot \mu_{R_{2}}(x, y), \\
v_{R_{1}+R_{2}}(x, y):=v_{R_{1}}(x, y)+v_{R_{2}}(x, y)-v_{R_{1}}(x, y) \cdot v_{R_{2}}(x, y)
\end{gathered}
$$

(5) R_{1} ש R_{2} :

$$
\begin{gathered}
\mu_{R_{1} \uplus R_{2}}(x, y):=\min \left[1, \mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)\right], \\
v_{R_{1} \uplus R_{2}}(x, y):=\max \left[0, v_{R_{1}}(x, y)+v_{R_{2}}(x, y)-1\right]
\end{gathered}
$$

(6) $R_{1} \cap R_{2}$:

$$
\begin{gathered}
\mu_{R_{1} \cap R_{2}}(x, y):=\max \left[0, \mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)-1\right] \\
v_{R_{1} \cap R_{2}}(x, y):=\min \left[1, v_{R_{1}}(x, y)+v_{R_{2}}(x, y)\right]
\end{gathered}
$$

(7) \bar{R} :

$$
\mu_{\bar{R}}(x, y):=\min \left[v_{R}(x, y), \mu_{A \times B}(x, y)\right], v_{\bar{R}}(x, y):=\max \left[\mu_{R}(x, y), v_{A \times B}(x, y)\right]
$$

(8) R^{-1} :

$$
\mu_{R^{-1}}(x, y):=\mu_{R}(y, x), v_{R^{-1}}(x, y):=v_{R}(y, x) .
$$

(9) $\square R$:

$$
\mu_{\square R}(x, y):=\mu_{R}(x, y), \nu_{\square R}(x, y):=1-\mu_{R}(x, y) .
$$

(10) $\diamond R$:

$$
\mu_{\diamond R}(x, y):=1-v_{R}(x, y), \nu_{\diamond R}(x, y):=v_{R}(x, y) .
$$

(11) $R_{1} @ R_{2}$:

$$
\mu_{R_{1} @ R_{2}}(x, y):=\left(\mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)\right) / 2, v_{R_{1} @ R_{2}}(x, y):=\left(v_{R_{1}}(x, y)+v_{R_{2}}(x, y)\right) / 2,
$$

(12) $R_{1} \$ R_{2}$:

$$
\mu_{R_{1} \oiint R_{2}}(x, y):=\sqrt{\mu_{R_{1}}(x, y) \cdot \mu_{R_{2}}(x, y)}, v_{R_{1} \$_{R_{2}}}(x, y):=\sqrt{v_{R_{1}}(x, y) \cdot v_{R_{2}}(x, y)}
$$

(13) $R_{1} \# R_{2}$:

$$
\mu_{R_{1} \# R_{2}}(x, y):=\frac{2 \mu_{R_{1}}(x, y) \cdot \mu_{R_{2}}(x, y)}{\left(\mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)\right)}, v_{R_{1} \# R_{2}}(x, y):=\frac{2 v_{R_{1}}(x, y) \cdot v_{R_{2}}(x, y)}{\left(v_{R_{1}}(x, y)+v_{R_{2}}(x, y)\right)} .
$$

(In the last expression it is assumed that if $\mu_{R_{1}}(x, y)=\mu_{R_{2}}(x, y)=0$, then $\mu_{R_{1} \# R_{2}}(x, y)$ $=0$ and similarly for $v_{R_{1} \# R_{2}}(x, y)=0$ if $v_{R_{1}}(x, y)=v_{R_{2}}(x, y)=0$.)
(14) $R_{1} \star R_{2}$:

$$
\mu_{R_{1} \star R_{2}}(x, y):=\frac{\mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)}{2\left(\mu_{R_{1}}(x, y) \cdot \mu_{R_{2}}(x, y)+1\right)}, \mu_{R_{1} \star R_{2}}(x, y):=\frac{v_{R_{1}}(x, y)+v_{R_{2}}(x, y)}{2\left(v_{R_{1}}(x, y) \cdot v_{R_{2}}(x, y)+1\right)}
$$

Theorem 3.5. Among the operations defined in Definition 3.4, the following are closed, i.e., for $R_{1}, R_{2}, R \in \operatorname{IFR}(A, B)$, we have $R_{1} \cup R_{2}, R_{1} \cap R_{2}, R_{1} \cdot R_{2}, R_{1} \cap R_{2}$, $\bar{R}, R_{1} @ R_{2}, R_{1} \$ R_{2}, R_{1} \# R_{2}$ all are intuitionistic fuzzy relations from A to B. $R^{-1} \in \operatorname{IFR}(B, A)$. The operations + , ש , \star are not closed, i.e., $R_{1}+R_{2}, R_{1} ש R_{2}$ and $R_{1} \star R_{2}$ may not belong to $\operatorname{IFR}(A, B)$.

Proof. It is easy to check that, for $R_{1}, R_{2}, R \in \operatorname{IFR}(A, B), R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \cdot R_{2}, R_{1} \cap R_{2}, \bar{R}, R_{1} @ R_{2}, R_{1} \$ R_{2}, R_{1} \# R_{2}$ and are intuitionistic fuzzy relations from A to B.

We will show by examples that the operations + , ש , \star are not closed.
Let $X=\{a, b, c\}, \quad A=\{a|(0.3,0.6), b|(0.4,0.5), c \mid(0.7,0.2)\}$ and $B=\{a \mid(0.4,0.2)$, $b|(0.5,0.4), c|(0.3,0.5)\}$, then

$$
A \times B=\begin{array}{|c|c|c|c|}
\hline \Gamma & a & b & c \\
\hline a & (0.3,0.6) & (0.3,0.6) & (0.3,0.6) \\
b & (0.4,0.5) & (0.4,0.5) & (0.3,0.5) \\
c & (0.4,0.2) & (0.5,0.4) & (0.3,0.5) \\
\hline
\end{array}
$$

Let

$$
R_{1}=\begin{array}{|c|c|c|c|}
\hline \Gamma & a & b & c \\
\hline a & (0.2,0.7) & (0.2,0.8) & (0.1,0.9) \\
b & (0.3,0.6) & (0.3,0.7) & (0.2,0.7) \\
c & (0.3,0.5) & (0.2,0.7) & (0.2,0.6) \\
\hline
\end{array}
$$

and

$$
R_{2}=\begin{array}{|c|c|c|c|}
\hline \Gamma & a & b & c \\
\hline a & (0.3,0.7) & (0.3,0.7) & (0.2,0.8) \\
b & (0.3,0.7) & (0.2,0.6) & (0.2,0.7) \\
c & (0.2,0.6) & (0.2,0.6) & (0.2,0.7) \\
\hline
\end{array}
$$

Now
(1)
$\mu_{R_{1}+R_{2}}(a, a)=\mu_{R_{1}}(a, a)+\mu_{R_{2}}(a, a)-\mu_{R_{1}}(a, a) \cdot \mu_{R_{2}}(a, a)=0.2+0.3-(0.2)(0.3)=0.44$,
but $\mu_{A \times B}(a, a)=0.3$. Hence $\mu_{R_{1}+R_{2}}(a, a) \nless \mu_{A \times B}(a, a)$. Therefore $R_{1}+R_{2} \notin I F R$ (A, B).
(2) $\mu_{R_{1} \uplus R_{2}}(b, a)=\min \left[1, \mu_{R_{1}}(b, a)+\mu_{R_{2}}(b, a)\right]=\min [1,0.3+0.3]=0.6$, but $\mu_{A \times B}$ $(b, a)=0.4$. Hence $\mu_{R_{1} \cup R_{2}}(b, a) \nless \mu_{A \times B}(b, a)$. Therefore $R_{1} \cup R_{2} \notin \operatorname{IFR}(A, B)$.
(3) $v_{R_{1} \star R_{2}}(b, a):=v_{R_{1}}(b, a)+v_{R_{2}}(b, a) / 2\left(v_{R_{1}}(b, a) \cdot v_{R_{2}}(b, a)+1\right)=1.3 / 2.84$, but $v_{A \times B}$ $(b, a)=0.5$. Hence $v_{R_{1} \star R_{2}}(b, a) \ngtr v_{A \times B}(b, a)$. Therefore $R_{1} \star R_{2} \notin \operatorname{IFR}(A, B)$.

Theorem 3.6. Let $R \in \operatorname{IFR}(A, B)$, then $R \subseteq \bar{R}$.
Proof. Let $R=\left(\mu_{R}, v_{R}\right) . \bar{R}=\left(\mu_{\bar{R}}, v_{\bar{R}}\right)$, where

$$
\mu_{\bar{R}}(x, y)=\min \left(v_{R}(x, y), \mu_{A \times B}(x, y)\right), v_{\bar{R}}(x, y)=\max \left(v_{R}(x, y), \mu_{A \times B}(x, y)\right) .
$$

Now $\overline{\bar{R}}=\left(\mu_{\overline{\bar{R}}}, v_{\overline{\bar{R}}}\right)$, where

$$
\begin{aligned}
& \mu_{\overline{\bar{R}}}(x, y)=\min \left(v_{\bar{R}}(x, y), \mu_{A \times B}(x, y)\right)=\min \left(\max \left(\mu_{R}(x, y), v_{A \times B}(x, y)\right), \mu_{A \times B}(x, y)\right), \\
& v_{\overline{\bar{R}}}(x, y)=\max \left(\mu_{\bar{R}}(x, y), v_{A \times B}(x, y)\right)=\max \left(\min \left(v_{R}(x, y), \mu_{A \times B}(x, y)\right), v_{A \times B}(x, y)\right) .
\end{aligned}
$$

We have to show that $\forall(x, y) \in X \times X$,

$$
\begin{gather*}
\mu_{R}(x, y) \leq \min \left(\max \left(\mu_{R}(x, y), v_{A \times B}(x, y)\right), \mu_{A \times B}(x, y)\right), \\
v_{R}(x, y) \geq \max \left(\min \left(v_{R}(x, y), \mu_{A \times B}(x, y)\right), v_{A \times B}(x, y)\right) . \tag{3}
\end{gather*}
$$

Remembering that $\mu_{R}(x, y) \leq \mu_{A \times B}(x, y), v_{R}(x, y) \geq v_{A \times B}(x, y)$ and taking various orders among $\mu_{R}(x, y), \mu_{A \times B}(x, y), v_{R}(x, y)$ and $v_{A \times B}(x, y)$, we can easily see that inequalities (3) hold good. Hence $R \subseteq \overline{\bar{R}}$.

Note 3.7. For every $A \in \operatorname{IFS}(X)$, we have $\square A=\overline{\square \bar{A}}$ and $\diamond=\overline{\square \bar{A}}$ (see Theorem 2 [2]). But for $A, B \in \operatorname{IFS}(X)$ and $R \in \operatorname{IFR}(A, B)$, as such $\square R \neq \overline{\square \bar{R}}$. For which we furnish the following example.

Example 3.8. Let $X=\{a, b, c\}$. Let $A, B \in \operatorname{IFS}(X)$ and $R \in \operatorname{IFR}(A, B)$ be given as in the following table:

	μ_{A}	v_{A}	μ_{B}	v_{B}	μ_{R}	v_{R}	$\mu_{\square R}$	$v_{\square R}$	$\mu_{\overline{\square \bar{R}}}$	$v_{\overline{\bar{\Omega}}}$

a	0.4	0.5	0.7	0.2	0.3	0.6	0.3	0.7	0.4	0.5
b	0.7	0.2	0.6	0.4	0.2	0.8	0.2	0.8	0.4	0.6
c	0.4	0.5	0.5	0.4	0.3	0.6	0.3	0.7	0.4	0.5

Thus it can be easily seen that $\square R \neq \overline{\diamond \bar{R}}$. However we have the following theorem.
Theorem 3.9. Let $R \in I F R(A, B)$, then (1) $\square R \subseteq \overline{\diamond \bar{R}}$ and (2) $\diamond R \subseteq \overline{\square \bar{R}}$.
Proof. (1) By definition $\square R$ is given by $\mu_{\square R}(x, y)=\mu_{R}(x, y), v_{\square R}(x, y)=1-\mu_{R}$ (x, y). Now $\overline{\diamond \bar{R}}=\left(\mu_{\overline{\diamond \bar{R}}}, v_{\overline{\diamond \bar{R}}}\right)$ is given by

$$
\begin{aligned}
\mu_{\diamond \overline{\bar{R}}}(x, y) & =\min \left[v_{\diamond \bar{R}}(x, y), \mu_{A \times B}(x, y)\right]=\min \left[v_{\bar{R}}(x, y), \mu_{A \times B}(x, y)\right] \\
& =\min \left[\max \left(\mu_{R}(x, y), v_{A \times B}(x, y)\right), \mu_{A \times B}(x, y)\right]
\end{aligned}
$$

and similarly $\nu_{\overline{\overline{0} \bar{R}}}$ can be found.
First we will show that $\mu_{\circ R}(x, y) \leq \mu_{\overline{\bar{R}}}(x, y) \quad \forall(x, y) \in X \times X$. Remembering that $\mu_{R}(x, y) \leq \mu_{A \times B}(x, y) \quad \forall(x, y) \in X \times X$, we have the following three possibilities:
(1) $\mu_{R}(x, y) \leq v_{A \times B}(x, y) \leq \mu_{A \times B}(x, y)$,
(2) $\mu_{R}(x, y) \leq \mu_{A \times B}(x, y) \leq v_{A \times B}(x, y)$,
(3) $v_{A \times B}(x, y) \leq \mu_{R}(x, y) \leq \mu_{A \times B}(x, y)$.

In each of the three cases,

$$
\begin{equation*}
\mu_{\circ R}(x, y)=\mu_{R}(x, y) \leq \mu_{\overline{\circ \bar{R}}}(x, y) . \tag{4}
\end{equation*}
$$

Also, $v_{\square R}(x, y)=1-\mu_{R}(x, y) \geq 1-\mu_{\overline{\vee \bar{R}}}(x, y) \geq v_{\overline{\vee \bar{R}}}(x, y) \quad\left(\because \mu_{\overline{\nabla \bar{R}}}(x, y)+v_{\overline{\triangle \bar{R}}}(x, y) \leq\right.$
$1)$. Hence the proof of the part (1) of the theorem.
(2) The proof of (2) is similar to the part (1).

Theorem 3.10. For $A, B \in \operatorname{IFS}(X)$, we have
(1) $\square(A \times B)=\square A \times \square B$,
(2) $\diamond(A \times B)=\diamond A \times \diamond B$

Proof. The proof is easy and we omit it. Also we have the following results.

Theorem 3.11. For $R_{1}, R_{2} \in \operatorname{IFR}(A, B)$ we have
(1) $\square\left(R_{1} \cup R_{2}\right)=\square R_{1} \cup \square R_{2}$
(2) $\diamond\left(R_{1} \cup R_{2}\right)=\diamond R_{1} \cup \diamond R_{2}$
(3) $\square\left(R_{1} \cap R_{2}\right)=\square R_{1} \cap \square R_{2}$
(4) $\diamond\left(R_{1} \cap R_{2}\right)=\diamond R_{1} \cap \diamond R_{2}$
(5) $\square\left(R_{1}+R_{2}\right)=\square R_{1}+\square R_{2}$
(6) $\diamond\left(R_{1}+R_{2}\right)=\diamond R_{1}+\diamond R_{2}$
(7) $\square\left(R_{1} \cdot R_{2}\right)=\square R_{1} \cdot \square R_{2}$
(8) $\diamond\left(R_{1} \cdot R_{2}\right)=\diamond R_{1} \cdot \diamond R_{2}$
(9) $\square\left(R_{1} \cap R_{2}\right)=\square R_{1} \cap \square R_{2}$
(10) $\diamond\left(R_{1} \cap R_{2}\right)=\diamond R_{1} \cap \diamond R_{2}$
(11) $\square\left(R_{1} ש R_{2}\right)=\square R_{1} ש \square R_{2}$
(12) $\diamond\left(R_{1} ש R_{2}\right)=\diamond R_{1} \uplus \diamond R_{2}$

Theorem 3.12. For $R_{1}, R_{2} \in \operatorname{IFR}(A, B)$ we have
(1) $R_{1} \subseteq R_{2} \Leftrightarrow R_{1}^{-1} \subseteq R_{2}^{-1}$,
(2) $\left(R_{1}^{-1}\right)^{-1}=R_{1}$,
(3) $\left(R_{1} * R_{2}\right)^{-1}=R_{1}^{-1} * R_{2}^{-1}$ where $*$ stands for the operations $\cup, \cap,+, \cdot, \cap, \cup$, @, \$, \#, \star.
(4) $(\square R)^{-1}=\square\left(R^{-1}\right)$.
(5) $(\diamond R)^{-1}=\diamond\left(R^{-1}\right)$.

Proof. (1) $R_{1} \subset R_{2} \Leftrightarrow \mu_{R_{1}}(x, y) \leq \mu_{R_{2}}(x, y)$ and $v_{R_{1}}(x, y) \geq v_{R_{2}}(x, y) \Leftrightarrow \mu_{R_{1}^{-1}}(y, x)$ $\leq \mu_{R_{2}^{-1}}(y, x)$ and $v_{R_{1}^{-1}}(y, x) \geq v_{R_{2}^{-1}}(y, x) \Leftrightarrow R_{1}^{-1} \subseteq R_{2}^{-1}$.
(2) It is easy to prove and we omit it.
(3) We prove for one operation \cup, rest are similar and we omit the proofs.

$$
\begin{aligned}
\mu_{\left(R_{1} \cup R_{2}\right)^{-1}}(x, y) & =\mu_{R_{1} \cup R_{2}}(y, x)=\max \left(\mu_{R_{1}}(y, x), \mu_{R_{2}}(y, x)\right) \\
& =\max \left(\mu_{R_{1}^{-1}}(x, y), \mu_{R_{2}^{-1}}(x, y)\right)=\mu_{R_{1}^{-1} \cup R_{2}^{-1}}(x, y)
\end{aligned}
$$

Similarly, $v_{\left(R_{1} \cup R_{2}\right)^{-1}}(x, y)=v_{R_{1}^{-1} \cup R_{2}^{-1}}(x, y)$. Therefore, $\left(R_{1} \cup R_{2}\right)^{-1}=R_{1}^{-1} \cup R_{2}^{-1}$.
(4) $\mu_{(\square R)^{-1}}(x, y)=\mu_{(\square R)}(y, x)=\mu_{R}(y, x)=\mu_{R^{-1}}(x, y)=\mu_{\square R^{-1}}(x, y)$,

$$
v_{(\square R)^{-1}}(x, y)=v_{(\square R)}(y, x)=1-\mu_{R}(y, x)=1-\mu_{R^{-1}}(x, y)=v_{\square R^{-1}}(x, y) .
$$

(5) The proof is similar to above.

Definition 3.13 [2] For $A \in \operatorname{IFS}(X)$, we use the following notations:

$$
\begin{gathered}
K_{A}=\max _{x \in X} \mu_{A}(x), L_{A}=\min _{x \in X} v_{A}(x), k_{A}=\min _{x \in X} \mu_{A}(x), l_{A}=\max _{x \in X} v_{A}(x) \\
C(A)=\left\{\left\langle x, K_{A}, L_{A}\right\rangle \mid x \in X\right\} \text { and } I(A)=\left\{\left\langle x, k_{A}, l_{A}\right\rangle \mid x \in X\right\}
\end{gathered}
$$

Definition 3.14. For $R \in \operatorname{IFR}(A, B)$, we use the following notations:

$$
\begin{gathered}
K_{R}=\max _{(x, y) \in X \times X} \mu_{R}(x, y), L_{R}=\min _{(x, y) \in X \times X} v_{R}(x, y), \\
k_{R}=\min _{(x, y) \in X \times X} \mu_{R}(x, y), l_{R}=\max _{(x, y) \in X \times X} v_{R}(x, y) \\
C(R)=\left\{\left\langle(x, y), K_{R}, L_{R}\right\rangle \mid(x, y) \in X \times X\right\}, \\
I(R)=\left\{\left\langle(x, y), k_{R}, l_{R}\right\rangle \mid(x, y) \in X \times X\right\}
\end{gathered}
$$

Theorem 3.15. For $A, B \in \operatorname{IFS}(X)$, we have the following
(1) $C(R)$ may not be an $I F R$ from A to B,
(2) $C(R)$ is an $I F R$ from $C(A)$ to $C(B)$,
(3) $I(R)$ is an $I F R$ from A to B,
(4) $I(R)$ is an $I F R$ from $I(A)$ to $I(B)$,
(5) $\bigcup_{R \in I F R(A, B)} C(R)=C(A \times B)=C(A) \times C(B)$,
(6) $\bigcup_{R \in I F R(A, B)} I(R)=I(A \times B)=I(A) \times I(B)$.

Proof. (1) We show by means of an example that $C(R)$ may not be an $I F R$ from A to B.Let $X=\{a, b, c\}, A=\{a|(0.3,0.6), b|(0.5,0.4), c \mid(0.8,0.2)\}$ and $B=\{a \mid(0.7,0.1)$, $b|(0.6,0.2), c|(0.3,0.6)\}$, then

$$
A \times B=\begin{array}{|c|c|c|c|}
\hline \Gamma & a & b & c \\
\hline a & (0.3,0.6) & (0.3,0.6) & (0.3,0.6) \\
b & (0.5,0.4) & (0.5,0.4) & (0.3,0.6) \\
c & (0.7,0.2) & (0.6,0.2) & (0.3,0.6) \\
\hline
\end{array}
$$

Let

$$
R=\begin{array}{|c|c|c|c|}
\hline \Gamma & a & b & c \\
\hline a & (0.2,0.7) & (0.2,0.8) & (0.1,0.7) \\
b & (0.2,0.5) & (0.1,0.5) & (0.2,0.8) \\
c & (0.2,0.4) & (0.5,0.5) & (0.1,0.9) \\
\hline
\end{array}
$$

Clearly, R is an $I F R$ from A to B. Now $K_{A}=0.8, L_{A}=0.2, K_{B}=0.7$ and $L_{B}=0.1$ hence,

$$
C(A)=\{a|(0.8,0.2), b|(0.8,0.2), c \mid(0.8,0.2)\}
$$

and

$$
\begin{aligned}
& C(B)=\{a|(0.7,0.1), b|(0.7,0.1), c \mid(0.7,0.1)\} \\
& C(A \times B)=\{\langle(x, y), 0.7,0.2\rangle \mid(x, y) \in X \times X\}
\end{aligned}
$$

and

$$
C(R)=\{\langle(x, y), 0.2,0.4\rangle \mid(x, y) \in X \times X\}
$$

Note that $C(R) \Phi A \times B$, since $\mu_{C(R)}(a, b)=0.2, v_{C(R)}(a, b)=0.4, \mu_{A \times B}(a, b)=0.3$ and $v_{A \times B}(a, b)=0.6$. Hence $C(R)$ is not an intuitionsitic fuzzy relation from A to B.
(2) By definition

$$
C(R)=\left\{\left\langle(x, y), K_{R}, L_{R}\right\rangle \mid(x, y) \in X \times X\right\}
$$

where

$$
K_{R}=\max _{(x, y) \in X \times X} \mu_{R}(x, y), L_{R}=\min _{(x, y) \in X \times X} v_{R}(x, y),
$$

Since $\mu_{R}(x, y) \leq \mu_{A \times B}(x, y)=\min \left(\mu_{A}(x), \mu_{B}(y)\right), \therefore \quad \mu_{R}(x, y) \leq \mu_{A}(x)$ and μ_{R} $(x, y) \leq \mu_{B}(y) \Rightarrow \max _{(x, y)} \mu_{R}(x, y) \leq \max _{x} \mu_{A}(x)$ and $\max _{(x, y)} \mu_{R}(x, y) \leq \max _{x} \mu_{B}(y)$ $\Rightarrow K_{R} \leq K_{A}$ and $K_{R} \leq K_{B} \Rightarrow K_{R} \leq \min \left(K_{A}, K_{B}\right) . \quad$ Similarly, $L_{R} \geq \max \left(L_{A}, L_{B}\right)$. Hence $C(R)$ is an $I F R$ from $C(A)$ to $C(B)$.
(3) The proof is easy and we omit it.
(4) The proof is analogous to (2).
(5) $\bigcup_{R \in I F R(A, B)} C(R)=\left\{\left\langle(x, y), \sup _{R \in I F R(A, B)} K_{R}, \inf _{R \in I F R(A, B)} L_{R}\right\rangle \mid(x, y) \in X \times X\right\}=$ $\left\{\left\langle(x, y), \sup _{R \in I F R(A, B)}\left(\max _{(a, b) \in X \times X} \mu_{R}(a, b)\right), \inf _{R \in I F R(A, B)}\left(\min _{(a, b) \in X \times X} v_{R}(a, b)\right)\right\rangle \mid(x, y) \in\right.$ $X \times X\}$ 。

Now we will show that $\sup _{R \in I F R(A, B)}\left(\max _{(a, b) \in X \times X} \mu_{R}(a, b)\right)=K_{A \times B}=\min \left[K_{A}, K_{B}\right]$.
Since $A \times B \in \operatorname{IFR}(A, B)$, we have

$$
\sup _{R \in I F R(A, B)}\left(\max _{(a, b) \in X \times X} \mu_{R}(a, b) \geq \max _{(a, b) \in X \times X} \mu_{A \times B}(a, b)\right)=K_{A \times B}
$$

Also since $\mu_{R}(a, b) \leq \mu_{A \times B}(a, b) \Rightarrow \max _{(a, b) \in X \times X} \mu_{R}(a, b) \leq \max _{(a, b) \in X \times X} \mu_{A \times B}(a, b)=$ $K_{A \times B}$, now by taking sup on either side we get the desired result. Also we have

$$
\begin{aligned}
K_{A \times B} & =\max _{(x, y)} \mu_{A \times B}(x, y)=\max _{(x, y)}\left[\min \left(\mu_{A}(x), \mu_{B}(y)\right)\right] \\
& =\min \left[\max _{x \in X} \mu_{A}(x), \max _{y \in X} \mu_{B}(y)\right]=\min \left[K_{A}, K_{B}\right]
\end{aligned}
$$

Similarly, we have

$$
L_{A \times B}=\max \left[L_{A}, L_{B}\right] . \quad C(A \times B)=C(A) \times C(B)
$$

(6) Proof is similar to the last one.

4. Composition of intuitionistic fuzzy relations

Definition 4.1. For $R_{1} \in \operatorname{IFR}(A, B)$ and $R_{2} \in \operatorname{IFR}(B, C)$ define the composition ‘ o' by, $\forall x, y \in X$

$$
\begin{aligned}
& \mu_{R_{1} \circ R_{2}}(x, y):=\max _{z \in X}\left[\min \left(\mu_{R_{1}}(x, z), \mu_{R_{2}}(z, y)\right)\right], \\
& v_{R_{1} \circ R_{2}}(x, y):=\min _{z \in X}\left[\max \left(v_{R_{1}}(x, z), v_{R_{2}}(z, y)\right)\right] .
\end{aligned}
$$

As a particular case of composition, if P is an intuitionistic fuzzy set of X and $R \in \operatorname{IFR}(A, B)$, then $S=P \circ R$ is an IFS of X defined as follows: $\forall y \in X$

$$
\begin{aligned}
& \mu_{P \circ R}(y):=\max _{z \in X}\left[\min \left(\mu_{P}(z), \mu_{R}(z, y)\right)\right], \\
& v_{P \circ R}(y):=\min _{z \in X}\left[\max \left(v_{P}(z), v_{R}(z, y)\right)\right] .
\end{aligned}
$$

Similarly $T=R \circ P$ is an $I F S$ of X which can be defined as $\forall y \in X$

$$
\mu_{R \circ P}(y):=\max _{z \in X}\left[\min \left(\mu_{R}(y, z), \mu_{P}(z)\right)\right]
$$

$$
v_{R \circ P}(y):=\min _{z \in X}\left[\max \left(v_{R}(y, z), v_{P}(z)\right)\right] .
$$

Theorem 4.2. For $R_{1} \in \operatorname{IFR}(A, B)$ and $R_{2} \in \operatorname{IFR}(B, C)$ the composition $R_{1} \circ R_{2}$ is an IFR from A to C.

Proof. $\mu_{R_{1} \circ R_{2}}(x, y) \leq \mu_{A \times B}(x, y)$ (see [7]). Similarly $v_{R_{1} \circ R_{2}}(x, y) \geq V_{A \times B}(x, y)$. It remains to show that $\mu_{R_{1} \circ R_{2}}(x, y)+v_{R_{1} \circ R_{2}}(x, y) \leq 1$. But this is easy to prove so we omit it.

Note. Elie Sanchez [9] has provided a methodology for solution of certain basic fuzzy relational equations. Here we pose an open problem:

Problem. Let X be the universal set. Let $A, B, C \in \operatorname{IFS}(X)$. Let $R_{1} \in \operatorname{IFR}(A, B)$ and $R_{2} \in \operatorname{IFR}(B, C)$. Consider the following set

$$
Y=\left\{R \in \operatorname{IFR}(B, C): R_{1} \circ R=R_{2}\right\}
$$

If Y is nonempty, then it is desirable to have a method to find an $R \in Y$, and moreover whether such an R is greatest, which is the case in fuzzy relational equations. Here we remark that Sanchez [9] introduced the special kind of operators like ($\otimes, \boldsymbol{0}$) to compose fuzzy relations. He used these operators in the resolution of fuzzy relational equations. However it seems it is not possible to generalize these operators for the intuitionsitic fuzzy case.

5. Extension principle

Theorem 5.1 (Extension Principle). Let X and Y be two universes. Let $A, B \in \operatorname{IFS}(X)$ and f be a mapping from X to Y. Let $R \in \operatorname{IFR}(A, B)$. Then $f(A)$ and $f(B)$ are IFSs on Y and f_{R} an IFR from $f(A)$ to $f(B)$, which are defined as follows: $\forall y \in Y$

$$
\mu_{f(A)}(y)=\left\{\begin{array}{ll}
\sup _{x \in f^{-1}(y)} \mu_{A}(x) & \text { if } f^{-1}(y) \neq 0, \\
0 & \text { otherwise },
\end{array} \quad v_{f(A)}(y)= \begin{cases}\inf _{x \in f^{-1}(y)} v_{A}(x) & \text { if } f^{-1}(y) \neq \emptyset, \\
1 & \text { otherwise }\end{cases}\right.
$$

Similarly $\mu_{f(B)}$ and $v_{f(B)}$ can be defined, and

$$
\forall y_{1}, y_{2} \in Y,
$$

$$
\mu_{f_{R}}\left(y_{1}, y_{2}\right)= \begin{cases}\sup _{x_{1} \in f^{-1}\left(y_{1}\right), x_{2} \in f^{-1}\left(y_{2}\right)} \mu_{R}\left(x_{1}, x_{2}\right) & \text { if both } f^{-1}\left(y_{1}\right) \neq 0, f^{-1}\left(y_{2}\right) \neq 0, \\ 0 & \text { otherwise }\end{cases}
$$

$$
V_{f_{R}}\left(y_{1}, y_{2}\right)= \begin{cases}\inf _{x_{1} \in f^{-1}\left(y_{1}\right), x_{2} \in f^{-1}\left(y_{2}\right)} v_{R}\left(x_{1}, x_{2}\right) & \text { if both } f^{-1}\left(y_{1}\right) \neq \emptyset, f^{-1}\left(y_{2}\right) \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

Proof. It is clear that $f(A)$ and $f(B)$ are IFS on Y. We have to show that $f(R)$ is an $I F R$ from $f(A)$ to $f(B)$. Let $y_{1}, y_{2} \in Y$. If either $f^{-1}\left(y_{1}\right)$ or $f^{-1}\left(y_{2}\right)$ is empty then $\mu_{f_{R}}\left(y_{1}, y_{2}\right)=0 \leq \min \left(\mu_{f(A)}\left(y_{1}\right), \mu_{f(B)}\left(y_{2}\right)\right)$. Let both $f^{-1}\left(y_{1}\right)$ and $f^{-1}\left(y_{2}\right)$ be nonempty. Then for each $\left(x_{1}, x_{2}\right) \in f^{-1}\left(y_{1}\right) \times f^{-1}\left(y_{2}\right)$, we have $\mu_{R}\left(x_{1}, x_{2}\right) \leq \min$ $\left(\mu_{A}\left(x_{1}\right), \mu_{B}\left(x_{2}\right)\right)$, taking sup on either side we get

$$
\begin{aligned}
& \mu_{f_{R}}\left(y_{1}, y_{2}\right)=\sup _{x_{1} \in f^{-1}\left(y_{1}\right), x_{2} \in f^{-1}\left(y_{2}\right)} \mu_{R}\left(x_{1}, x_{2}\right) \leq \sup _{x_{1} \in f^{-1}\left(y_{1}\right), x_{2} \in f^{-1}\left(y_{2}\right)}\left(\min \left(\mu_{A}\left(x_{1}\right), \mu_{B}\left(x_{2}\right)\right)\right. \\
& \quad=\min \left(\sup _{x_{1} \in f^{-1}\left(y_{1}\right)} \mu_{A}\left(x_{1}\right), \sup _{x_{2} \in f^{-1}\left(y_{2}\right)} \mu_{B}\left(x_{2}\right)\right)=\min \left(\mu_{f(A)}\left(y_{1}\right), \mu_{f(B)}\left(y_{2}\right)\right) .
\end{aligned}
$$

Similarly it can be shown that $v_{f_{R}}\left(y_{1}, y_{2}\right) \geq \max \left(v_{f(A)}\left(y_{1}\right), v_{f(B)}\left(y_{2}\right)\right)$. Also it is clear that f_{R} satisfies the intuitionsitic condition. Hence the proof of the theorem.

6. Reflexivity, symmetry and transitivity

Definition 6.1. An $\operatorname{IFR} R$ on $A \in \operatorname{IFS}(X)$ is reflexive of order (α, β) if $\forall x \in X$ $\mu_{R}(x, x)=\alpha$ and $v_{R}(x, x)=\beta$ such that $\mu_{A}(x) \neq 0$ and $v_{A}(x) \neq 1$.

Note 6.2. If R is reflexive of order (α, β), then $\mu_{R^{-1}}(x, x)=\mu_{R}(x, x)=\alpha$ and $v_{R^{-1}}(x, x)=v_{R}(x, x)=\beta$. So R^{-1} is also reflexive of order (α, β).

Theorem 6.3. If R_{1} and R_{2} are IFR's on A of orders $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ respectively, then $R_{1} \cup R_{2}, R_{1} \cap R_{2}, R_{1}+R_{2}, R_{1} \cdot R_{2}, R_{1} \cup R_{2}, R_{1} \cap R_{2}, \square R_{1}, \diamond R_{1}$, $R_{1} @ R_{2}, R_{1} \$ R_{2}, R_{1} \# R_{2}, R_{1} \star R_{2}$ are reflexive of orders respectively, $\left(\max \left(\alpha_{1}, \alpha_{2}\right), \min \left(\beta_{1}, \beta_{2}\right)\right),\left(\min \left(\alpha_{1}, \alpha_{2}\right), \max \left(\beta_{1}, \beta_{2}\right)\right),\left(\alpha_{1}+\alpha_{2}-\alpha_{1} \cdot \alpha_{2}\right),\left(\beta_{1} \cdot \beta_{2}\right)$, $\left(\alpha_{1} \cdot \alpha_{2}, \beta_{1}+\beta_{2}-\beta_{1} \cdot \beta_{2}\right),\left(\min \left(1, \alpha_{1}+\alpha_{2}\right), \max \left(0, \beta_{1}+\beta_{2}-1\right)\right), \quad \max \left(0, \alpha_{1}+\alpha_{2}-1\right)$, $\min \left(1, \beta_{1}+\beta_{2}\right),\left(\alpha_{1}, 1-\alpha_{1}\right),\left(1-\beta_{1}, \beta_{1}\right),\left(\alpha_{1}+\alpha_{2} / 2, \beta_{1}+\beta_{2} / 2\right),\left(\sqrt{\alpha_{1} \cdot \alpha_{2}}, \sqrt{\beta_{1} \cdot \beta_{2}}\right)$, $\left(2 \alpha_{1} \cdot \alpha_{2} / \alpha_{1}+\alpha_{2}, 2 \beta_{1} \cdot \beta_{2} / \beta_{1}+\beta_{2}\right),\left(\alpha_{1}+\alpha_{2} / 2\left(\alpha_{1} \cdot \alpha_{2}+1\right), \beta_{1}+\beta_{2} / 2\left(\beta_{1} \cdot \beta_{2}+1\right)\right)$.

Proof. The proof follows from the definitions of the respective operations.
Definition 6.4. An $I F R \quad R$ on A is symmetric if and only if

$$
\mu_{R}(x, y)=\mu_{R}(y, x) \text { and } v_{R}(x, y)=v_{R}(y, x) \quad \forall x, y \in X
$$

Theorem 6.5. R is symmetric implies R^{-1} is so.
Proof. $\mu_{R^{-1}}(x, y)=\mu_{R}(y, x)=\mu_{R}(x, y)=\mu_{R^{-1}}(y, x) \forall x, y \in X$. Similarly $v_{R^{-1}}(x, y)$ $=v_{R^{-1}}(y, x)$. Hence the proof. Also we have the following result.

Theorem 6.6. If R_{1} and R_{2} are symmetric IFR's on A, then $R_{1} * R_{2}$ is also symmetric on A, where * stands for the operations $\cup, \cap,+, \cdot, \cap, \mathbb{\oplus}, @, \$, \#, \star$.

Definition 6.7. An $I F R \quad R$ on $A \in \operatorname{IFS}(X)$ is said to be transitive if $R^{2}(=R \circ R) \subseteq R$. We have the following results.

Theorem 6.8. If R is a transitive relation on A then R^{-1} is so.
Theorem 6.9. If R_{1}, R_{2} are transitive relations on A, then so is $R_{1} \cap R_{2}$.

7. Conclusion

In this paper we have introduced the concept of intuitionsitic fuzzy relation over intuitionsitic fuzzy sets. Resolving intuitionsitic fuzzy relational equations will be our future research.

References

[1] Krassimir T. Atanassov, Intuitionistic fuzzy relations, in: L. Antonov, Ed., III International school "Automation and Scientific Instrumentation", Varna (Oct.), (1984), 56-57.
[2] Krassimir T. Atanassov, Intuitionsitic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
[3] Krassimir T. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, 33(1) (1989), 3746.
[4] Krassimir T. Atanassov, New operation defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61 (1994), 137-142.
[5] Krassimir T. Atanassov, Two operators on intuitionistic fuzzy sets, Comptes Rendus de 1’ Academie Bulgare des sciences, 41(5) (1988), 35-38.
[6] P. Burillo and H. Bustince, Intuitionistic fuzzy relations, Part-I, Mathware and Soft Computing, 2 (1995), 5-38.
[7] M. K. Chakraborty and Mili Das, Studies in fuzzy relations over fuzzy subsets, Fuzzy Sets and Systems, 9 (1983), 79-89.
[8] A. Kaufmann, Introduction to the theory of fuzzy subsets, Vol-I, Academic Press, New York, (1975).
[9] Elie Sanchez, Resolution of composite fuzzy relation equations, Inform. And Control, 30 (1) (1976), 38-48.
[10] L. A. Zadeh, Fuzzy sets, Inform. And Control, 8 (1965), 338-353.

[^0]: Received July, 2005

 * Research work is supported by AICTE, INDIA, and G. H. Patel College of Engg. And Tech., V V Nagar, Gujarat, INDIA
 Correspondence to: Motilal Panigrahi, Dept of Maths, IIT Kharagpur-721302, INDIA.

