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GENERALIZED IDEALS WITH A TRIANGULAR NORM

M. PANIGRAHI, S. NANDA AND G.PANDA

ABSTRACT. The notion of generalized ideal is redefined with respect to a triangular norm
for a completely distributive complete lattice with a greatest element and least element
and the new mathematical object is termed as a T-g-ideal. We have furnished examples
of T-g-ideals with different t-norms and shown that a T-g-ideal with respect to one t-
norm may not be a T-g-ideal with respect to another t-norm. New T-g-ideals from old
ones have been constructed through various poset operations like product of lattices,
ordinal sum of lattices, dual of a lattice, interval of a lattice etc.

1. INTRODUCTION

In 1971 the concept of fuzzy subgroups was introduced by A. Rosenfeld [12] and sub-
sequently it was redefined with the help of t-norms by Anthony and Sherwood [5] and it
was named as t-fuzzy subgroups. Later many researchers have contributed to the study of
t-fuzzy subgroups. Yuan and Wu [15] applied the concept of fuzzy set in lattice theory and
introduced the notions of fuzzy sublattices and fuzzy ideals. Later on fuzzy lattices was
extensively studied by N. Ajmal [1-4]. Ideals are of fundamental importance in algebra. Fil-
ters, the order dual of lattice ideals have a variety of applications in logic and topology. M.
H. Burton et al. [6, 7] have generalized the notion of a filter and called the new mathemat-
ical object as a generalized filter. In [11] A. A. Ramadan et al. introduced generalized ideal
(Definition 2.3) (which was defined on a power set) is the dual of a generalized filter. Taking
motivation from [5], in this paper we define a generalized ideal for a completely distributive
complete lattice (with a greatest element and a least element) with respect to a triangular
norm (briefly a t-norm) and call it a T-g-ideal. We show with examples that T-g-ideals with
different t-norms exist and a T-g-ideal w.r.t. one t-norm may not be a T-g-ideal w.r.t. a
different t-norm. However, a T-g-ideal w.r.t. the minimum t-norm which is the strongest
t-norm is a T-g-ideal w.r.t. all other t-norms.

We organize our paper as follows. Section 1 is introduction. In Section 2 we recall some
relevant definitions, notation and results which will be needed in the sequel. In Section 3
we define a T-g-ideal and provide some examples. In Section 4 first we have recalled some
classes of lattices and constructed T-g-ideals on them from known T-g-ideals.

2. PRELIMINARIES

Let (P,<,v,A,1,0) be a bounded completely distributive complete lattice with partial
order relation <, and the binary operations v, A respectively called join and meet are defined
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as avb:=sup{a,b} and anb:=inf{a,b} (a,be P). The greatest element 1 (unique) has the
property that avi=1=1va Vae P, and the least element 0 (unique) has the property
that a A0 =0 = 0A a. Recall that the complete distributivity of P means the distributive
law Vges(ag Aa) = (Viesar) A a holds. For a € P, we say b € P is a complement of a if
avb=1and anb=0. A lattice P is called a Boolean algebra if (i) P is distributive, i.e.,
av(bac) = (avb)A(ave)Va,b,ce P, (ii) P has 1,0, (iii) each element a € P has a (necessarily
unique) complement a’ € P.

Throughout this paper we consider a lattice as a completely distributive complete lat-
tice.

The concept of t-norm was introduced in [13] while working on probabilistic metric
spaces. More details about t-norms and their applications can be found in the recent mono-
graphs [9] and [14]. As usual we write I to denote the closed unit interval [0,1]. The
definition of a t-norm is as follows:

Definition 2.1. A triangular norm (t-norm, for short) is a function 7:1 x I — I such that
Va,y,z€l:
(1) T(z,1) = = (boundary condition);
(2) T(x,y) =T(y,x) (commutativity);
(3) x<y=T(x,2) <T(y,z) (monotonicity);
4) T(z,T(y,2))=T(T(x,y),z) (associativity).

It is clear that T'(x,0) =T(0,2) =0 Vx €I, ie. 0 is the annihilator.

For a t-norm T an element a €]0,1[ is called a zero divisor of T if there exists some
b €]0,1[ such that T'(a,b) =0.

The examples of t-norms which are frequently used in a fuzzy setting are the following;:

(1) (Minimum norm) Ths(z,y) = min{z,y} Va,yel;

(2) (Product norm) Tp(z,y) =2y Va,ye€I;

(3) (Lukasiewicz norm) T (z,y) = max{z+y—-1,0} Vz,yel.
Definition 2.2 ([13]). A t-norm 7j is stronger than a t-norm Tb, if and only if
T (z,y) 2 To(z,y) Vr,yel.

Lemma 2.1 ([13]). Tas is the strongest of all t-norms.

The function 7' is defined on IxI. However the domain of the function can be generalized
to I (see [10]). The commutativity and associativity of a t-norm T ensures its unique n-ary
extension which will be denoted by T, i.e.,

To(z1,22,...,20) = Tp(2i, Tno1 (21,22, Tim1, Tig, - Tny))
for all 1 <i<n, where n>2, To =T. Also the following may be noted.

(1) Th(z1,22,...,2,) =0 if 2; =0 for some j,1<j<n.

(2) If z; =1, then

Tn(z1,@2,...,2n) = Tno1(21, 22, .., Tjo1, Tjl, - Tn))-
Hence T, (z1,22,...,%n) =a; if zj =1 Vj=#i.
(3) For o a permutation of {x1,xa,...,z,}, we have
To(x1,@0,. .. xn) = Th(a(zy,x2,. .., 20)).
4) To(x1,29,...,25) < Tn(arl,arg,...,J;j_l,x;,ij,l,...,xn) if z; < zj for some

J,1<j<n.
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(5) Tn(x17~~~7xn—17Tn(y17~~~7yn)):Tn(xlwu7xn—27Tn(xn—17y17~~~7yn—1)7yn)~
(6) Let a;,b; €I Vi,1<i<nand n>2. Then

Tn(T(a17 bl),T(a27 bg), cee ,T((Lm bn)) = T(Tn(al,ag, cee ,an),Tn(bl,bg, cee ,bn))
However in this paper we will write T instead of T,.

Definition 2.3 ([11]). Let X be a nonempty set. Let P = P(X) be the power set of X.
A nonzero function d: P — I is called a generalized-ideal (g-ideal, for short) if the following
conditions are satisfied:

(G1) d(X) =0,

(G2) AcB=d(A)>d(B), VYA,BeP,

(G3) d(AuB)>d(A)Ad(B)) VYA,BeP.

3. T-G-IDEAL

Definition 3.1. Let P be a lattice. A nonzero function 7: P — I is called a T-generalized-
ideal (T-g-ideal for short) w.r.t. a t-norm 7T if the following conditions are satisfied:
(TG-1) (1) =0,
(TG-2) a<b=7(a)27(b), Va,beP,
(TG-3) 71(avbd)>2T(r(a), (b)) Va,beP.

Remark 3.1. By Lemma 2.1 and (T'G-3), we can note that if 7 is a T-g-ideal w.r.t. Ths then
for any t-norm T', 7 is also a T-g-ideal w.r.t. T'. Also note that since 7 is nonzero, condition
(TG-2) suggests that 7(0) = sup7(a) > 0. When T is the minimum t-norm, conditions

aeP
(TG-2) and (TG-3) become equivalent to the condition
7(avb)=T(r(a),7(b)) Va,beP. (3.1)

But for any other t-norm (TG-2) and (T'G-3) may not be equivalent to (3.1), which may be
verified from the following example.

Example 3.1. Consider the Lukasiewicz t-norm, T7:
Tr(zr,y) =max{zx+y-1,0} Va,bel.

Let X = [n[:={1,2,...,n} for some fixed n € IN (where IN is the set of natural numbers).
Let P = P(X), the power set of X, which is a lattice, with set inclusion as the order relation,
and 1:= [n[ and 0:= ¢. Define 7: P — I as follows:

i
T(A) = 1—% if Ae P,A+ ¢, where m=n(n+1)/2
1 if A=¢.
i

ie[n[

Then clearly 7(1) = 7([n[) = 1 -
i i
since Yi< Yi=1-52 5125 o 1(4) > 7(B).
icA  ieB m m
To prove condition (TG-3), let A, B € P. Two cases may arise (i) An B = ¢, or, (ii)
AnB# ¢.

1-2 0. Let AcBe P, implies that 7(A) > 7(B),
m
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(i) If AnB = ¢, let Yi =p, ».i =g, then ZUB@':p+q.HenceT(A):1—27

€A +z'eB €A m

T =1-—and 7(AuB)=1-——=. Now Tr(7 T —max{l-=+1-=- =

(B)=1-L and r(40B) =1- 2% Now Ty.(r(4), 7(B)) =max{1- 2 +1- L _1,0)
m pgq m m m

max{l—g—iﬁ}:l— (since p+q <m).
m m m
(i) If AnB#¢,let Y i=p, > i=q, then » i=p+q-r, wherer= > i>0. Note

€A i€B i€ AuB ieAr_wi_B
-r
that p+ ¢ -7 < m. Hence 7(A) =1 - £,T(B) =1-L and T(AuB) = 1-2797" Now
m m m

Ty (r(A), 7(B)) = max{1 - £ — L 0} = k(say). I 1- 279 <0, then k = 0 and (TG-3) is
m m m

satisfied. Tt 127250, then
m

k=1-279 1 PTLTT (s 0) (3.2)
m m

Thus in all the cases condition (T'G-3) is satisfied.
Hence 7 is a T-g-ideal w.r.t. 1.

Remark 3.2. Note (eqn. (3.2)) when An B # ¢, Tr(7(A),7(B)) <7(Au B).

The strict inequality is obtained for T7-norm, which is not the case for a T-g-ideal w.r.t.
minimum t-norm. This also suggests that the function 7 defined above is not a T-g-ideal
w.r.t. minimum t-norm.

In fact 7 is also not a T-g-ideal w.r.t. product t-norm. In Theorem 3.1 we will show
why this happened.

For a function 7: P — I and a € P, we use the following notation [11]

\
(@)= ", 7(0)

Definition 3.2. Let P be a lattice. A nonzero function 7: P — [ is called a T-generalized-
ideal base (T-g-IB for short) w.r.t. a t-norm T if the following conditions are satisfied:

(TGB1) 7(1) =0,
(TGB2) (7)(avb)>2T(r(a),7(b)) VYa,belP.

Evidently, a T-g-ideal is a T-g-IB.
The following propositions are immediate.

Proposition 3.1. If a function 7: P — I is a T-g-IB, then (7) is a T-g-ideal.
Proposition 3.2. A T-¢g-IB7: P — I is a T-g-ideal if and only if 7= (7).

We furnish an example to show that a T-g-IB may not be a T-g-ideal.
Example 3.2. Let X =[4[. Let P = P(X). We define a function 7: P — I as follows:

1/3 ifA=¢

14 if A={1}
1/3 if A={2}
1/6  if A= {3}

A=Y 16 i A={1,2)

1/6 if A={1,3}
1/4 if A={2,3}
0 otherwise.
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Here {3} ¢ {1,3} but 7({3}) =1/6 <1/5 =7({1,3}). Hence 7 is not a T-g-ideal w.r.t any
t-norm. But it can be easily checked that 7 is a T-g-IB w.r.t. Ty,. Note that Ty (z,y) = 0,
Vz,y<0.5.

But

14 if A={3}
(7)(4) _{ 7(A) otherwise

is a T-g-ideal w.r.t. 1.
But still then (7) is not a T-g-ideal w.r.t. minimum t-norm. Since

min({7)({1}),(r)({2})) = min(1/4,1/3) = 1/4.
But min(r)({1}u{2}) = (7)({1,2}) =1/6 < 1/4.
However, (1) is a T-g-ideal w.r.t. product t-norm.

Here we present a theorem on T-g-ideal w.r.t. product t-norm.

Let P be a lattice and let x,y € P. We say xz is covered by y (or y covers x) and
denoted by z < y or (y = x), if x <y and = < z <y implies z = z. That means there can be
no elements z of P with < z <y. Let 0 be the least element of P. Then a € P is called an
atom if 0 — a. The set of atoms of P is denoted by A(P). The lattice P is called atomic
if given a # 0 in P, 3x € A(P) such that = < a. Every finite lattice is atomic. By contrast,
it may happen that an infinite lattice has no atom at all. The chain of non-negative real
numbers provides an example. Even a Boolean lattice may have no atoms (see [8].)

Theorem 3.1. Let P be a finite Boolean algebra. Let 7: P — I be a T-g-ideal w.r.t a t-norm
with no zero divisors. Then there exists a € A(P) such that 7(b) =0 Vb>a € P.

Proof. If there exists a € A(P) such that 7(a) = 0 then by condition (TG-2), we have
7(b) =0 Vb > a € P. Therefore we only have to prove the existence of a € A(P) with
7(a) =0.

We note that a finite Boolean algebra is always a join of its atoms (finitely many). Let
ai,as,...,a, be all the atoms of P. Then 1 =a;vasV...va,. By TG-3, 7(a1VasV...vay,) >
T(r(a1),7(az),...7(ay)). A

Since T is a t-norm with no zero divisors, and 0 = 7(1) = 7(a1 Vaz V... Vvay,) =
T(7(a1),7(az2),...7(ay), therefore, there exists at least one atom a; = 0. O

The following example justifies the Theorem 3.1.

Example 3.3. Let Y =[3[={1,2,3}. Let P =P(Y) be the power set of Y. Define 7: P - I
as follows:

1/3 ifA=¢

14 if A={1}
1/3  if A={2}
1/4 if A={3}

7(4) = 1/6 if A={1,2}

1/5 if A={1,3}
1/4 if A={2,3}
0 otherwise.
Note that 7(a) # 0 for all A(P) ={{1},{2},{3}}. By Theorem 3.1 7 can not be a T-g-ideal
w.r.t. the product norm Tp.
Now reconstruct the above example as follows:
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Let X =Y u {4} ={1,2,3,4} and define ¢ : P(X) - I by

T(A) i AGY
Y(A)=1 1/6 A=Y
0 otherwise.

It can be easily verified that ¥ is a T-g-ideal.
4. CONSTRUCTION OF T-G-IDEALS

Suppose P and @ are two lattices with partial orders <p and <g respectively. Similarly
we will use the notations Vp,Ap,1p,0p etc. for join, meet, greatest element, least element
respectively, with subscript as the corresponding lattice. 'When there is no confusion we
might omit the subscript at places. In general {Pi}{i=1,27...,n} be lattices with partial order
relations <p,.

Here we consider the following lattices (see [8]) to construct T-g-ideals on them.

(1) The direct product P x @ is a lattice on the product set with the order relation

(z1,91) < (w2,2) in Px Q iff 21 <p x2 and y1 <g ¥

also (21,y1) V (22,y2) = (21 Vp 22,41 Vg y2) similarly the meet operation can be
defined. Here note that 1p.xg = (1p,1g), and Opxg = (0p,00).

(2) Similarly the direct product P := [T;L; P; of n lattices {P;}(i—1,2,... n} can be defined.

(3) The ordinal sum P & @ is a lattice on the disjoint union of P and @ with the order
relation z <y in P& Q iff one of (a) z,y e Pand x <p y, or (b) z,y e Q and x <q v,
or(c) z € P and y € @ holds good.

Here iP@Q = iQ, OP@Q = Op.

(4) Similarly the ordinal sum @i, P; :== Py ® P> @ --- ® P,, of n lattices {P,;};—12.. n}
is a lattice on the disjoint union of P;’s with order relation as follows: z < y in
o7 P, iff (a) z,y € P; for some 4, and x <p, y or (b) z € P,y € P; and i < j. Also
ler P, =1p,,00r P, = 0p,.

(5) The cardinal power QF is the lattice on the set of order preserving maps f: P — Q
(i.e. Va1,29 € P,y <p 2 = f(x1) <g f(x2)), with partial order relation:

f<gin QT iff f(x)<gg(x) VxeP.
The greatest element in Q¥ is the map iQP:P — () defined by iQP (z) = iQ Vo e
P. Similarly the least element in Q¥ is the map OQP:P — () defined by OQP (z) = OQ,
Vo eP.
(6) The dual lattice P* of P is a lattice on the same set P with order relation x <p« y
iff y<pa. Thus 1p«:=0p, Ops:=1p, 2V y:=zAryand zA* y:=x vy.
If 2 is the complement of z in P, i.e. zva’ = 1p and zA2’ = 0p then 2’ is also the
complement of z in P*, with zv*z’ = 1p+ = 0p = A2’ and zA* 2" =0p« = 1p = v’
(7) Let P be alattice. Let # € P. Then both the intervals [0, z] and [z, 1] are sublattices
of P.

Theorem 4.1. Let P:= [ P; be the direct product of n lattices {P;} iz 2, ny. Let 72 Py —

i=1
I be a T-g-ideal for each i =1,2,...,n w.r.t. the t-norm T. Then the function 7 : P — I
defined by

7(a) =T(r(a1),m2(az2),...,m(an)) Va:=(ai,a2,...,a,)€P
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is a T-g-ideal on P if 7(0p) = T(0p,,0p,,...,0p,) #0.
Proof. Since 7(0p) # 0, 7 is a nonzero function. We will check the three conditions for 7 to
be a T-g-ideal.

(1) 7(ip) =T(r(1p),7(ip,),...,7(1p,)) =T7(0,0,...,0) = 0.
(2) Let a(= (a1,a2,...,a,)) < b(= (b1,ba,...,b,)) € P. Then a; <p, b;Vi = 1,2,...,n.
Now

T(@) = T(Tl(al)vTQ(GQ)v e 7Tn(an)) 2 T(Tl(bl)vTQ(b2)7' = 7Tn(bn))

(-o7i(a;) > p,7i(b;) for each 7, and also T is monotonic in each of the coordinates) =

7(b).
(3) Consider a,b € P.
7(avb) = (a1 Vp, b1,...,a; VP, biy...,an VP, by)
=T(r(arvp, b1),...,7(a; vp, b;),...,7(an Vp, by))
> T(T(r(a1),m1(b1)), ..., T(ri(a;), (b)), .., T(mn(an), m1(bn))
=T(T(r(a1),...,m(an)), T(m1(a1),...,mn(an))m1(b1))).
Therefore 7 is a T-g-ideal on P. O

n
Conversely let P := [ | P; be the direct product of n lattices {P;} -1, ny. Let 7: P -1
i=1
be a T-g-ideal w.r.t. a t-norm 7. Then can we derive some T-g-ideal on each P;?
The answer is affirmative which is our next theorem.

Theorem 4.2. Let P := HR be the direct product of n lattices {P;} -1, ny. Let 7 :
i=1
P - I be a T-g-ideal on P w.r.t. a t-norm T. Assume that 7(0p,,0p,,...,1p,,...,0p, ) =0,

Vi e [n[. For each i € [n[, define 7; : P; » I by 7i(a;) = 7(0p,,0p,, ..., ai,...,0p,) for each
a; € P;. Then T; defined this way is a T-g-ideal.

Proof. Since 7 is a nonzero function, 7(0p) >0 and hence 7;(0p,)=7(0p,,...,0p,,...,0p, ) =
T(Op) > 0.

(1) Now Ti(ip,i) :T(0P17~~~71Pi7~~~70Pn) =0.

(2) Let a; <p b;. Then Ti(ai) = T(Opl,...,ai,...,ﬁpn) > T(Opl,...,bi,...,()pn) = Tl(bz)

(3) Let a;,b; € P;.

7i(aivb) = 7(0py,....a; Vbi,...,0p,)

T[T(Oleu7ai7~~~70P,L)77—(6P17~~~7bi7~~~70Pn)]
T(7i(a:),7i(bi))-

Hence 7; is a T-g-ideal on P; for each 3. O

v

Definition 4.1. Let P be a complete lattice. A function 7: P — I is called a T-g-preideal
w.r.t. a t-norm 7T if

(TGP1) 7(1) >0,

(TGP2) a<b= 1(a)>7(b), Va,beP,

(TGP3) 7(avb)>T(r(a),7(b)) Va,beP.

Now we will consider the ordinal sum P @ @ of two complete lattices P and Q.
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Theorem 4.3. Let P ® @ be the ordinal sum of two complete lattices P and Q with order
relations as defined before. Let T: P — I be a T:g—prez'c{eal w.r.t. at-normT, and P:Q — I
be a T-g-ideal w.r.t. the t-norm T such that 7(1) > 1(0). Then the function

rep:PoQ 1

defined by
| m(z) ifxzeP
(red)(=) = { ba) YreQ
is a T-g-ideal on P ® Q w.r.t. the t-norm T.

Proof. (1) As the maximal element in P@® Q is 1g, (t @) (1g) = ¢ (1g) = 0.
(2) Let © <pgqg v, then three cases may arise. (a) x,y € P and x <p y, but then
(reoy)(z)=71(x) 27(y) = (@ ¢Y)(y). (b) If z,y € @ and z < y, then similar to
above. (c) If z € P,y € Q, then (@) (x) = 7(x) > 7(1) > ¢(0) > ¥(y) = (Tt @) (y)-
(3) Let x,y € P® Q. Here also we have to do for all the three cases. When x,y € P or
x,y € Q then 7 ® v coincides with 7 or ¥ respectively. Hence (TG-3) is satisfied. If
x € Py e @, then vy =y. Therefore, (r@¥)(zvy)=(Tr®¥)(y) = ¥(y). Now

T((roy)(z), (roy)(y) =T(7(x),¥(y)) 2 T(1,¢(y)) = (y) = (rev)(zvy).
Therefore, T ® ¢ is a T-g-ideal. O

The above theorem can be extended to the ordinal sum of finitely many complete
lattices.
Theorem 4.4. Let P:= @ P; be the ordinal sum of n lattices {P;} (1, ny. Let 72 Py — 1

i=1
be a T-g-preideal for each i =1,2,...,n -lwrt a ﬁxeq t-norm TAand Tn P, -1 beA a
T-g-ideal w.r.t. the t-norm T such that 11 (1) 2 72(0) 2 72(1) 2+ > 7;(0) 2 7(1) > -+ > 7,,(0).
Then the function 7:= (11 ® T2 ® - ®T7,) : P > I defined by
T(x)=7i(z) ifxePi=1,2,...,n

Proof. The proof is similar to the Theorem 4.3. ]

Before going to the next theorem on ordinal sum of lattices here we write the definition
of ordinal sum of a family of t-norms.

Definition 4.2. Let (T, )aea be a family of t-norms and (Jaq, €q[)aca be a family of non-
empty pairwise disjoint open subintervals of I. Then the t-norm 7T : I? - I defined by

_ . T — Qg Y—Gq . 2
T(w):{ o+ (Ca — aa) T‘”(ea—aa’iea—aa) it (2,9) € [0, ea]?, )
min(z,y) otherwise

is called the ordinal sum of the summands (aq,€n,Twn),a €A, and is denoted by
T =({aa,asTa))ach-

For a proof that 7' defined in (4.3) is a t-norm see ([9] Theorem 3.43).

Theorem 4.5. Let P := @Pi be the ordinal sum of n complete lattices P; with order

i=1
relations as defined before. Let 7; : Py - I be a T-g-ideal w.r.t. t-norm T;, for each i =
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1,2,...,n. Let 0=co<c1 <+ <cp_1<cy =1 and consider the ordinal sum of the summands

(en-irCn-iv1,Ti),i=1,2,...,n, denoted by T = ((Cn—i,Cn—i+1,Ti))ie[n[- Then the function
¢o:P—>1

defined by

&(x) = cnei + (Cniv1 — Cn-i)Ti(x)  forx e P

is a T-g-ideal on P w.r.t. the t-norm T.

Proof. Clearly ¢ is nonzero.
(1) ¢(ip) = ¢(ipn) =Co+ (Cl — CQ)Tn(iP7L) = 0, as Co = O,Tn(ipn) =0.
(2) Let z <p y, then two cases may arise.
(a) When z,y € P, and z <p, y, so 7;(z) > 7;(y) as 7; is a T-g-ideal and we have
P(x) = cni + (Cniv1 = Cn-i)Ti(x) 2 Cni + (Cniv1 — cn-i)Ti(y) = O(y).
(b) When z € P;, ye Pj,i<j,thenn—i>n—j+1 and 80 ¢, > ¢—jr1. Now
d(x) = cnoi + (Cnoin1 — Cni)Ti(®) 2 Cpojur
= Cnj + (Cnoji1 = Cnj) 2 Cnmj + (Cnji1 = Cnj) T3 (y) = O(y).
Hence TG-2 is satisfied.
(3) Let x,y € P. Here also we have to do for both the cases.
(a) When x,y € P;, then x vy € P; and so
P&V Y) = cni + (Cnoivt — Cn-i)Ti(T VY) 2 poi + (Cnoiv1 — cnei) Ti(7(2), 7(y)).
But by applying (4.3), we get
T(p(2),d(y)) = T(cn-i + (cn-is1 = n=i)Ti(2), Cni + (Cnis1 = Cn-i)Ti(y))
= cni + (Cnmiv1 = =) Ti(7(2), 7(y))-
Hence ¢(z vy) > T(d(z), ().
(b) When z € P;, y € Pj, i < j, then x vy =y € P; and ¢—; > ¢p—j. Also ¢y +
(cn-i+1 = Cnei)Ti(T) 2 Cnej + (Cnoju1 — Cn-j )75 (Y)-
Now ¢(x Vy) = cn-j + (Cnjr1 — Cn-j)Tj (& VY) = Cnei + (Cp—ju1 — Cn—yj )T (y), but
T(p(x),d(y)) = T(cn-i + (cn-iv1 = cn-i) i), Cnj + (Cnji1 — )75 (y))
min(cp—; + (Cnois1 = Cn-i)7i (), Cpn—j t+ (Cn—j+1 - Cn—j)Tj(y))
= Cp—j t (Cn—j+1 - Cn—j)Tj(y)-
Hence ¢(z vy) > T(¢(x), d(y)).
Hence (TG-3) is satisfied.
Therefore, ¢ is a T-g-ideal. O

Notation: Let S = {x1,22,...,2,} be a finite set. Let f:S — I, then we use the
notation (ITS) (f(x)) =T(f(z1), f(z2),..., f(zyn)) in the following theorem.

Theorem 4.6. Let QT be the cardinal power of lattices as defined before. Let P and Q be
finite. Let ¢ : Q — I be a T-g-ideal w.r.t. the t-norm T and (mTP)(¢(OQP (z))) >0. Then

the function ¥* : QF — I defined by ¢*(f) = (mj,ﬂp)(¢(f(a:))) is a T-g-ideal.

Proof. From the construction of 1*, we have 1" (0gr) = (wTP) (¥(0gr(x))) >0 (assumption
on ). Hence ¢* is a nonzero function.
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(1) ¢*(1gr) = (,1p)(W(gr(2))) =0 (P(lgr(y)) =¥(ig) =0 Vye P and 0 is an
annihilator for T').

(2) Let f <gr g where f,g are order preserving maps from P to Q. f <qgr g = f(z) <
g(x)V¥(x,P) = ¥(f(x)) 2 ¥ (g(x))Vz € P using this result and the monotonicity of
T in each coordinate, we have 1*(f) = (I’TP)(z/J(f(x)) > (w’TP) (¥(g(x))) =v*(9).

(3) Let f,ge@F, then

. T T
VIV = Ly WY@ = ) ) @)

T T
(0. py TOU@) V@) =TC

T ()¢ (9))-
Thus ¢* is a T-g-ideal. O

T
(L (f(2))), (. P) (¥(9(2))))

Theorem 4.7. Let P be a Boolean algebra. Let T: P — I be a T-g-ideal w.r.t. a t-norm T.
Then the map 7° : P* - I (P* is the dual Boolean algebra of P), defined by 7*(z) = 7(a')
where, ' is the complement of x € P.

Proof. Since T is nonzero, 7*(z) is also nonzero.
(1) Note that ip* = OP. Now T*(ip*) = T*(Op) = T(ip) =0.
(2) Let z<pry=y<pr=a'<py =7(a')27(y). So 7*(x) =7(z") 2 7(y') = 7" (y).
(3) Finally let 2,y € P*, 7*(zv*y) = 7" (xny) = 7((zAy)") = 7(2'vy") 2 T (7 ('), 7(y")) =
T(r* (), 7 ().
Thus 7 is a T-g-ideal. O

Theorem 4.8. Let P be a Boolean algebra. Let 7: P — I be a T-g-ideal w.r.t. a t-norm T
Let z € P, then the map 7|y := 7| 1 : [0,2] » I defined by 7|.(y) =7(y) Vye[0,z], is

(i) a T-g-ideal w.r.t. the t-norm T if 7(x) =0,

(ii) otherwise a T-g-preideal w.r.t. the t-norm T.

Proof. The proof is easy and we omit it. O

Theorem 4.9. Let P be a Boolean algebrg. Let 7: P — I be a T-g-ideal w.r.t. a t-norm T.
Let & & P, then the map 7* = 7lg, 1, : [2,1] — I defined by 71°(y) = 7(y) Vy e [w,1], is a
T-g-ideal w.r.t. the t-norm T if T7(x) > 0.

Proof. The proof is easy and we omit it. O

5. CONCLUSION

This paper deals with T-g-ideals for a completely distributive complete lattice with
respect to a triangular norm. Examples of T-g-ideal with respect to different t-norms have
been constructed. Existence of an atom with T-g-ideal value as zero is proved with respect
to a t-norm with no zero divisors. Also T-g-ideals have been constructed on product lattices,
ordinal sum of lattices, dual lattice, interval lattices etc. This research work can be extended
to T-g-prime ideals, and study of their images, pre-images etc. Lattice ideal theory has
application in domains and information systems. Concept analysis [8] provides a powerful
technique in information science for classifying and analyzing compressed sets of data. It
builds a partially ordered set which reveals inherent hierarchical structures and natural sub
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grouping and dependencies among objects and attributes. The concept of T-g-ideal can be
used in formal concept analysis, since a context with a suitable partial order becomes a
complete lattice.

(1]
2]

[3]
[4]
[5]
[6]

[7]

REFERENCES

N. Ajmal and K. V. Thomas: Fuzzy lattices, Information Sciences, 79(1994), 271-291.

N. Ajmal and K. V. Thomas: A complete study of the lattices of fuzzy congruences and mormal
subgroups, Information Sciences, 82(1995), 197-218.

N. Ajmal and K. V. Thomas: Fuzzy lattices I, J. Fuzzy Math., 10(2002), 255-274.

N. Ajmal and K. V. Thomas: Fuzzy lattices II, J. Fuzzy Math., 10(2002), 275-295.

A. M. Anthony and H. Sherwood: Fuzzy groups redefined, J. Math. Anal. Appl., 69(1979), 124-130.
M. H. Burton, Muraleetharan and J. Gutierrez Garcia: Generalized filter 1, Fuzzy Sets and Systems,
106(1999), 275-284.

M. H. Burton, Muraleetharan and J. Gutierrez Garcia: Generalized filter 2, Fuzzy Sets and Systems,
106(1999), 393-400.

B. A. Dav and H. A. Priestley: Introduction to Lattices and Order, Cambridge University Press, 2002.
E. P. Klement, R. Mesiar and E. Pap: Triangular Norms, in Trends in Logic, Studia Logica Library,
Vol. 8, Kluwer Academic Publishers, Dordrecht, 2000.

M. T. Osman Abu: On the direct product of fuzzy subgroups, Fuzzy Sets and Systems, 12(1984), 87-91.
A. A. Ramadan, M. A. Abdel-Satter and Yong Chan Kim: Generalized ideals, J. Fuzzy Mathematics,
11(2003), 67-84.

A. Rosenfeld: Fuzzy subgroups, J. Math. Anal. Appl., 35(1971), 512-517.

B. Schweizer and A. Sklar: Statistical metric spaces, Pacific J. Math., 10(1960), 313-334.

B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, Amsterdam, 1983.

B. Yuan and W. Wu: Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems, 35(1990), 231-240.

G. H. Patel College of Engg. and Tech.
Department of Mathematics

Gujarat, India

E-mail address: motilal.panigrahi@gmail.com

KIIT University

Department of Mathematics

Bhubaneswar, India

E-mail address: snanda.iitkgp@gmail.com

Indian Institute of Technology

Department of Mathematics

Kharagpur, India

E-mail address: geetanjali®maths.iitkgp.ernet.in





