J. Adv. Math. Stud.
Vol. 6(2013), No. 1, 116-126

http://journal.fairpartners.ro

GENERALIZED IDEALS WITH A TRIANGULAR NORM

M. PANIGRAHI, S. NANDA AND G.PANDA

Abstract

The notion of generalized ideal is redefined with respect to a triangular norm for a completely distributive complete lattice with a greatest element and least element and the new mathematical object is termed as a T-g-ideal. We have furnished examples of T-g-ideals with different t-norms and shown that a T-g-ideal with respect to one tnorm may not be a T-g-ideal with respect to another t-norm. New T-g-ideals from old ones have been constructed through various poset operations like product of lattices, ordinal sum of lattices, dual of a lattice, interval of a lattice etc.

1. INTRODUCTION

In 1971 the concept of fuzzy subgroups was introduced by A. Rosenfeld [12] and subsequently it was redefined with the help of t-norms by Anthony and Sherwood [5] and it was named as t-fuzzy subgroups. Later many researchers have contributed to the study of t-fuzzy subgroups. Yuan and Wu [15] applied the concept of fuzzy set in lattice theory and introduced the notions of fuzzy sublattices and fuzzy ideals. Later on fuzzy lattices was extensively studied by N. Ajmal [1-4]. Ideals are of fundamental importance in algebra. Filters, the order dual of lattice ideals have a variety of applications in logic and topology. M. H. Burton et al. $[6,7]$ have generalized the notion of a filter and called the new mathematical object as a generalized filter. In [11] A. A. Ramadan et al. introduced generalized ideal (Definition 2.3) (which was defined on a power set) is the dual of a generalized filter. Taking motivation from [5], in this paper we define a generalized ideal for a completely distributive complete lattice (with a greatest element and a least element) with respect to a triangular norm (briefly a t-norm) and call it a T-g-ideal. We show with examples that T-g-ideals with different t-norms exist and a T-g-ideal w.r.t. one t-norm may not be a T-g-ideal w.r.t. a different t-norm. However, a T-g-ideal w.r.t. the minimum t-norm which is the strongest t-norm is a T-g-ideal w.r.t. all other t-norms.

We organize our paper as follows. Section 1 is introduction. In Section 2 we recall some relevant definitions, notation and results which will be needed in the sequel. In Section 3 we define a T-g-ideal and provide some examples. In Section 4 first we have recalled some classes of lattices and constructed T-g-ideals on them from known T-g-ideals.

2. PRELIMINARIES

Let $(P, \leq, \vee, \wedge, \hat{1}, \hat{0})$ be a bounded completely distributive complete lattice with partial order relation \leq, and the binary operations \vee, \wedge respectively called join and meet are defined

[^0]as $a \vee b:=\sup \{a, b\}$ and $a \wedge b:=\inf \{a, b\} \quad(a, b \in P)$. The greatest element $\hat{1}$ (unique) has the property that $a \vee \hat{1}=\hat{1}=\hat{1} \vee a \quad \forall a \in P$, and the least element $\hat{0}$ (unique) has the property that $a \wedge \hat{0}=\hat{0}=\hat{0} \wedge a$. Recall that the complete distributivity of P means the distributive law $\vee_{k \in J}\left(a_{k} \wedge a\right)=\left(\vee_{k \in J} a_{k}\right) \wedge a$ holds. For $a \in P$, we say $b \in P$ is a complement of a if $a \vee b=\hat{1}$ and $a \wedge b=\hat{0}$. A lattice P is called a Boolean algebra if (i) P is distributive, i.e., $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) \forall a, b, c \in P$, (ii) P has $\hat{1}, \hat{0}$, (iii) each element $a \in P$ has a (necessarily unique) complement $a^{\prime} \in P$.

Throughout this paper we consider a lattice as a completely distributive complete lattice.

The concept of t-norm was introduced in [13] while working on probabilistic metric spaces. More details about t-norms and their applications can be found in the recent monographs [9] and [14]. As usual we write I to denote the closed unit interval [0,1]. The definition of a t-norm is as follows:

Definition 2.1. A triangular norm (t-norm, for short) is a function $T: I \times I \rightarrow I$ such that $\forall x, y, z \in I$:
(1) $T(x, 1)=x$ (boundary condition);
(2) $T(x, y)=T(y, x)$ (commutativity);
(3) $x \leq y \Rightarrow T(x, z) \leq T(y, z)$ (monotonicity);
(4) $T(x, T(y, z))=T(T(x, y), z)$ (associativity).

It is clear that $T(x, 0)=T(0, x)=0 \quad \forall x \in I$, i.e. 0 is the annihilator.
For a t-norm T an element $a \in] 0,1[$ is called a zero divisor of T if there exists some $b \in] 0,1[$ such that $T(a, b)=0$.

The examples of t-norms which are frequently used in a fuzzy setting are the following:
(1) (Minimum norm) $T_{M}(x, y)=\min \{x, y\} \quad \forall x, y \in I$;
(2) (Product norm) $T_{P}(x, y)=x y \quad \forall x, y \in I$;
(3) (Lukasiewicz norm) $T_{L}(x, y)=\max \{x+y-1,0\} \quad \forall x, y \in I$.

Definition 2.2 ([13]). A t-norm T_{1} is stronger than a t-norm T_{2}, if and only if $T_{1}(x, y) \geq T_{2}(x, y) \quad \forall x, y \in I$.

Lemma 2.1 ([13]). T_{M} is the strongest of all t-norms.
The function T is defined on $I \times I$. However the domain of the function can be generalized to I^{n} (see [10]). The commutativity and associativity of a t-norm T ensures its unique n -ary extension which will be denoted by T_{n}, i.e.,

$$
T_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=T_{n}\left(x_{i}, T_{n-1}\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)\right)
$$

for all $1 \leq i \leq n$, where $n \geq 2, T_{2}=T$. Also the following may be noted.
(1) $T_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ if $x_{j}=0$ for some $j, 1 \leq j \leq n$.
(2) If $x_{j}=1$, then

$$
\left.T_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=T_{n-1}\left(x_{1}, x_{2}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)\right)
$$

Hence $T_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i}$ if $x_{j}=1 \quad \forall j \neq i$.
(3) For α a permutation of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, we have

$$
T_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=T_{n}\left(\alpha\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) .
$$

(4) $T_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq T_{n}\left(x_{1}, x_{2}, \ldots, x_{j-1}, x_{j}^{*}, x_{j+1}, \ldots, x_{n}\right)$ if $x_{j} \leq x_{j}^{*}$ for some $j, 1 \leq j \leq n$.
(5) $T_{n}\left(x_{1}, \ldots, x_{n-1}, T_{n}\left(y_{1}, \ldots, y_{n}\right)\right)=T_{n}\left(x_{1}, \ldots, x_{n-2}, T_{n}\left(x_{n-1}, y_{1}, \ldots, y_{n-1}\right), y_{n}\right)$.
(6) Let $a_{i}, b_{i} \in I \quad \forall i, 1 \leq i \leq n$ and $n \geq 2$. Then

$$
T_{n}\left(T\left(a_{1}, b_{1}\right), T\left(a_{2}, b_{2}\right), \ldots, T\left(a_{n}, b_{n}\right)\right)=T\left(T_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right), T_{n}\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right)
$$

However in this paper we will write T instead of T_{n}.
Definition $2.3([11])$. Let X be a nonempty set. Let $P=\mathcal{P}(X)$ be the power set of X. A nonzero function $d: P \rightarrow I$ is called a generalized-ideal (g-ideal, for short) if the following conditions are satisfied:
(G1) $d(X)=0$,
(G2) $A \subset B \Rightarrow d(A) \geq d(B), \quad \forall A, B \in P$,
(G3) $d(A \cup B) \geq d(A) \wedge d(B)) \quad \forall A, B \in P$.

3. T-G-IDEAL

Definition 3.1. Let P be a lattice. A nonzero function $\tau: P \rightarrow I$ is called a T-generalizedideal (T-g-ideal for short) w.r.t. a t-norm T if the following conditions are satisfied:

$$
\begin{array}{ll}
(\mathrm{TG}-1) & \tau(\hat{1})=0, \\
(\mathrm{TG}-2) & a \leq b \Rightarrow \tau(a) \geq \tau(b), \quad \forall a, b \in P, \\
(\mathrm{TG}-3) & \tau(a \vee b) \geq T(\tau(a), \tau(b)) \quad \forall a, b \in P .
\end{array}
$$

Remark 3.1. By Lemma 2.1 and (TG-3), we can note that if τ is a T-g-ideal w.r.t. T_{M} then for any t-norm T, τ is also a T-g-ideal w.r.t. T. Also note that since τ is nonzero, condition (TG-2) suggests that $\tau(\hat{0})=\sup _{a \in P} \tau(a)>0$. When T is the minimum t-norm, conditions (TG-2) and (TG-3) become equivalent to the condition

$$
\begin{equation*}
\tau(a \vee b)=T(\tau(a), \tau(b)) \quad \forall a, b \in P \tag{3.1}
\end{equation*}
$$

But for any other t-norm (TG-2) and (TG-3) may not be equivalent to (3.1), which may be verified from the following example.

Example 3.1. Consider the Lukasiewicz t-norm, T_{L} :

$$
T_{L}(x, y)=\max \{x+y-1,0\} \quad \forall a, b \in I
$$

Let $X=[n[:=\{1,2, \ldots, n\}$ for some fixed $n \in I N$ (where $I N$ is the set of natural numbers). Let $P=\mathcal{P}(X)$, the power set of X, which is a lattice, with set inclusion as the order relation, and $\hat{1}:=[n[$ and $\hat{0}:=\phi$. Define $\tau: P \rightarrow I$ as follows:

$$
\tau(A)= \begin{cases}\left\{\begin{array}{ll}
\sum_{i \in A} i & \\
1-\frac{\text { if } A \in P, A \neq \phi, \text { where } m=n(n+1) / 2}{m} & \text { if } A=\phi
\end{array} .\right.\end{cases}
$$

Then clearly $\tau(\hat{1})=\tau\left(\left[n[)=1-\frac{\sum_{i \in[n[} i}{m}=1-\frac{m}{m}=0\right.\right.$. Let $A \subseteq B \in P$, implies that $\tau(A) \geq \tau(B)$, since $\sum_{i \in A} i \leq \sum_{i \in B} i \Rightarrow 1-\frac{\sum_{i \in A} i}{m} \geq 1-\frac{\sum_{i \in B}^{m} i}{m} \Rightarrow \tau(A) \geq \tau(B)$.

To prove condition (TG-3), let $A, B \in P$. Two cases may arise (i) $A \cap B=\phi$, or, (ii) $A \cap B \neq \phi$.
(i) If $A \cap B=\phi$, let $\sum_{i \in A} i=p, \sum_{i \in B} i=q$, then $\sum_{i \in A} \cup B i=p+q$. Hence $\tau(A)=1-\frac{p}{m}$, $\tau(B)=1-\frac{q}{m}$ and $\tau(A \cup B)=1-\frac{p+q}{m}$. Now $T_{L}(\tau(A), \tau(B))=\max \left\{1-\frac{p}{m}+1-\frac{q}{m}-1,0\right\}=$ $\max \left\{1-\frac{p}{m}-\frac{q}{m}, 0\right\}=1-\frac{p+q}{m}($ since $p+q \leq m)$.
(ii) If $A \cap B \neq \phi$, let $\sum_{i \in A}^{m} i=p, \sum_{i \in B} i=q$, then $\sum_{i \in A \cup B} i=p+q-r$, where $r=\sum_{i \in A \cap B} i>0$. Note that $p+q-r \leq m$. Hence $\tau(A)=1-\frac{p}{m}, \tau(B)=1-\frac{q}{m}$ and $\tau(A \cup B)=1-\frac{p+q-r}{m}$. Now $T_{L}(\tau(A), \tau(B))=\max \left\{1-\frac{p}{m}-\frac{q}{m}, 0\right\}=k$ (say). If $1-\frac{p+q}{m}<0$, then $k=0$ and (TG-3) is satisfied. If $1-\frac{p+q}{m} \geq 0$, then

$$
\begin{equation*}
k=1-\frac{p+q}{m}<1-\frac{p+q-r}{m} \quad(\text { as } r>0) \tag{3.2}
\end{equation*}
$$

Thus in all the cases condition (TG-3) is satisfied
Hence τ is a T-g-ideal w.r.t. T_{L}.
Remark 3.2. Note (eqn. (3.2)) when $A \cap B \neq \phi, T_{L}(\tau(A), \tau(B))<\tau(A \cup B)$.
The strict inequality is obtained for T_{L}-norm, which is not the case for a T-g-ideal w.r.t. minimum t-norm. This also suggests that the function τ defined above is not a T-g-ideal w.r.t. minimum t-norm.

In fact τ is also not a T-g-ideal w.r.t. product t-norm. In Theorem 3.1 we will show why this happened.

For a function $\tau: P \rightarrow I$ and $a \in P$, we use the following notation [11]

$$
\langle\tau\rangle(a):={ }_{a \leq b}^{\vee} \tau(b)
$$

Definition 3.2. Let P be a lattice. A nonzero function $\tau: P \rightarrow I$ is called a T-generalizedideal base (T-g-IB for short) w.r.t. a t-norm T if the following conditions are satisfied:

$$
\begin{array}{ll}
\text { (TGB1) } & \tau(\hat{1})=0, \\
\text { (TGB2) } & \langle\tau\rangle(a \vee b) \geq T(\tau(a), \tau(b)) \quad \forall a, b \in P .
\end{array}
$$

Evidently, a T-g-ideal is a T-g-IB.
The following propositions are immediate
Proposition 3.1. If a function $\tau: P \rightarrow I$ is a T - $g-I B$, then $\langle\tau\rangle$ is a T - g-ideal.
Proposition 3.2. A $T-g-I B \tau: P \rightarrow I$ is a T - g-ideal if and only if $\tau=\langle\tau\rangle$.
We furnish an example to show that a T-g-IB may not be a T-g-ideal.
Example 3.2. Let $X=[4[$. Let $P=P(X)$. We define a function $\tau: P \rightarrow I$ as follows:

$$
\tau(A)= \begin{cases}1 / 3 & \text { if } A=\phi \\ 1 / 4 & \text { if } A=\{1\} \\ 1 / 3 & \text { if } A=\{2\} \\ 1 / 6 & \text { if } A=\{3\} \\ 1 / 6 & \text { if } A=\{1,2\} \\ 1 / 5 & \text { if } A=\{1,3\} \\ 1 / 4 & \text { if } A=\{2,3\} \\ 0 & \text { otherwise. }\end{cases}
$$

Here $\{3\} \subset\{1,3\}$ but $\tau(\{3\})=1 / 6<1 / 5=\tau(\{1,3\})$. Hence τ is not a T-g-ideal w.r.t any t-norm. But it can be easily checked that τ is a T-g-IB w.r.t. T_{L}. Note that $T_{L}(x, y)=0$, $\forall x, y \leq 0.5$.

But

$$
\langle\tau\rangle(A)= \begin{cases}1 / 4 & \text { if } A=\{3\} \\ \tau(A) & \text { otherwise }\end{cases}
$$

is a T-g-ideal w.r.t. T_{L}.
But still then $\langle\tau\rangle$ is not a T-g-ideal w.r.t. minimum t-norm. Since

$$
\min (\langle\tau\rangle(\{1\}),\langle\tau\rangle(\{2\}))=\min (1 / 4,1 / 3)=1 / 4
$$

But $\min \langle\tau\rangle(\{1\} \cup\{2\})=\langle\tau\rangle(\{1,2\})=1 / 6<1 / 4$.
However, $\langle\tau\rangle$ is a T-g-ideal w.r.t. product t-norm.
Here we present a theorem on T-g-ideal w.r.t. product t-norm.
Let P be a lattice and let $x, y \in P$. We say x is covered by y (or y covers x) and denoted by $x<y$ or $(y \rightharpoonup x)$, if $x<y$ and $x \leq z<y$ implies $z=x$. That means there can be no elements z of P with $x<z<y$. Let $\hat{0}$ be the least element of P. Then $a \in P$ is called an atom if $0<a$. The set of atoms of P is denoted by $\mathcal{A}(P)$. The lattice P is called atomic if given $a \neq 0$ in $P, \exists x \in \mathcal{A}(P)$ such that $x \leq a$. Every finite lattice is atomic. By contrast, it may happen that an infinite lattice has no atom at all. The chain of non-negative real numbers provides an example. Even a Boolean lattice may have no atoms (see [8].)
Theorem 3.1. Let P be a finite Boolean algebra. Let $\tau: P \rightarrow I$ be a T-g-ideal w.r.t a t-norm with no zero divisors. Then there exists $a \in \mathcal{A}(P)$ such that $\tau(b)=0 \forall b \geq a \in P$.

Proof. If there exists $a \in \mathcal{A}(P)$ such that $\tau(a)=0$ then by condition (TG-2), we have $\tau(b)=0 \quad \forall b \geq a \in P$. Therefore we only have to prove the existence of $a \in \mathcal{A}(P)$ with $\tau(a)=0$.

We note that a finite Boolean algebra is always a join of its atoms (finitely many). Let $a_{1}, a_{2}, \ldots, a_{n}$ be all the atoms of P. Then $\hat{1}=a_{1} \vee a_{2} \vee \ldots \vee a_{n}$. By TG-3, $\tau\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right) \geq$ $T\left(\tau\left(a_{1}\right), \tau\left(a_{2}\right), \ldots \tau\left(a_{n}\right)\right)$.

Since T is a t-norm with no zero divisors, and $0=\tau(\hat{1})=\tau\left(a_{1} \vee a_{2} \vee \ldots \vee a_{n}\right)=$ $T\left(\tau\left(a_{1}\right), \tau\left(a_{2}\right), \ldots \tau\left(a_{n}\right)\right.$, therefore, there exists at least one atom $a_{j}=0$.

The following example justifies the Theorem 3.1.
Example 3.3. Let $Y=[3[=\{1,2,3\}$. Let $P=\mathcal{P}(Y)$ be the power set of Y. Define $\tau: P \rightarrow I$ as follows:

$$
\tau(A)= \begin{cases}1 / 3 & \text { if } A=\phi \\ 1 / 4 & \text { if } A=\{1\} \\ 1 / 3 & \text { if } A=\{2\} \\ 1 / 4 & \text { if } A=\{3\} \\ 1 / 6 & \text { if } A=\{1,2\} \\ 1 / 5 & \text { if } A=\{1,3\} \\ 1 / 4 & \text { if } A=\{2,3\} \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\tau(a) \neq 0$ for all $\mathcal{A}(P)=\{\{1\},\{2\},\{3\}\}$. By Theorem 3.1τ can not be a T-g-ideal w.r.t. the product norm T_{P}.

Now reconstruct the above example as follows:

Let $X=Y \cup\{4\}=\{1,2,3,4\}$ and define $\psi: \mathcal{P}(X) \rightarrow I$ by

$$
\psi(A)= \begin{cases}\tau(A) & \text { if } A \varsubsetneqq Y \\ 1 / 6 & \text { if } A=Y \\ 0 & \text { otherwise }\end{cases}
$$

It can be easily verified that ψ is a T-g-ideal.

4. CONSTRUCTION OF T-G-IDEALS

Suppose P and Q are two lattices with partial orders \leq_{P} and \leq_{Q} respectively. Similarly we will use the notations $\vee_{P}, \wedge_{P}, \hat{1}_{P}, \hat{0}_{P}$ etc. for join, meet, greatest element, least element respectively, with subscript as the corresponding lattice. When there is no confusion we might omit the subscript at places. In general $\left\{P_{i}\right\}_{\{i=1,2, \ldots, n\}}$ be lattices with partial order relations $\leq_{P_{i}}$.

Here we consider the following lattices (see [8]) to construct T-g-ideals on them.
(1) The direct product $P \times Q$ is a lattice on the product set with the order relation

$$
\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right) \text { in } P \times Q \text { iff } x_{1} \leq_{P} x_{2} \text { and } y_{1} \leq_{Q} y_{2}
$$

also $\left(x_{1}, y_{1}\right) \vee\left(x_{2}, y_{2}\right)=\left(x_{1} \vee_{P} x_{2}, y_{1} \vee_{Q} y_{2}\right)$ similarly the meet operation can be defined. Here note that $\hat{1}_{P \times Q}:=\left(\hat{1}_{P}, \hat{1}_{Q}\right)$, and $\hat{0}_{P \times Q}:=\left(\hat{0}_{P}, \hat{0}_{Q}\right)$.
(2) Similarly the direct product $P:=\prod_{i=1}^{n} P_{i}$ of n lattices $\left\{P_{i}\right\}_{\{i=1,2, \ldots, n\}}$ can be defined.
(3) The ordinal sum $P \oplus Q$ is a lattice on the disjoint union of P and Q with the order relation $x \leq y$ in $P \oplus Q$ iff one of (a) $x, y \in P$ and $x \leq_{P} y$, or (b) $x, y \in Q$ and $x \leq_{Q} y$, or(c) $x \in P$ and $y \in Q$ holds good.

Here $\hat{1}_{P \oplus Q}=\hat{1}_{Q}, \hat{0}_{P \oplus Q}=\hat{0}_{P}$.
(4) Similarly the ordinal sum $\oplus_{i=1}^{n} P_{i}:=P_{1} \oplus P_{2} \oplus \cdots \oplus P_{n}$ of n lattices $\left\{P_{i}\right\}_{i=1,2, \ldots, n\}}$ is a lattice on the disjoint union of P_{i} 's with order relation as follows: $x \leq y$ in $\oplus_{i=1}^{n} P_{i}$ iff (a) $x, y \in P_{i}$ for some i, and $x \leq_{P_{i}} y$ or (b) $x \in P_{i}, y \in P_{j}$ and $i<j$. Also $\hat{1}_{\oplus_{i=1}^{n} P_{i}}:=\hat{1}_{P_{n}}, \hat{0}_{\oplus_{i=1}^{n} P_{i}}:=\hat{0}_{P_{1}}$.
(5) The cardinal power Q^{P} is the lattice on the set of order preserving maps $f: P \rightarrow Q$ (i.e. $\forall x_{1}, x_{2} \in P, x_{1} \leq_{P} x_{2} \Rightarrow f\left(x_{1}\right) \leq_{Q} f\left(x_{2}\right)$), with partial order relation:

$$
f \leq g \text { in } Q^{P} \text { iff } f(x) \leq_{Q} g(x) \quad \forall x \in P .
$$

The greatest element in Q^{P} is the map $\hat{1}_{Q^{P}}: P \rightarrow Q$ defined by $\hat{1}_{Q^{P}}(x)=\hat{1}_{Q} \quad \forall x \in$ P. Similarly the least element in Q^{P} is the map $\hat{0}_{Q^{P}}: P \rightarrow Q$ defined by $\hat{0}_{Q^{P}}(x)=\hat{0}_{Q}$, $\forall x \in P$.
(6) The dual lattice P^{*} of P is a lattice on the same set P with order relation $x \leq_{P^{*}} y$ iff $y \leq_{P} x$. Thus $\hat{1}_{P^{*}}:=\hat{0}_{P}, \hat{0}_{P^{*}}:=\hat{1}_{P}, x \vee^{*} y:=x \wedge y$ and $x \wedge^{*} y:=x \vee y$.

If x^{\prime} is the complement of x in P, i.e. $x \vee x^{\prime}=\hat{1}_{P}$ and $x \wedge x^{\prime}=\hat{0}_{P}$ then x^{\prime} is also the complement of x in P^{*}, with $x \vee^{*} x^{\prime}=\hat{1}_{P^{*}}=\hat{0}_{P}=x \wedge x^{\prime}$ and $x \wedge^{*} x^{\prime}=\hat{0}_{P^{*}}=\hat{1}_{P}=x \vee x^{\prime}$.
(7) Let P be a lattice. Let $x \in P$. Then both the intervals $[\hat{0}, x]$ and $[x, \hat{1}]$ are sublattices of P.
Theorem 4.1. Let $P:=\prod_{i=1}^{n} P_{i}$ be the direct product of n lattices $\left\{P_{i}\right\}_{\{i=1,2, \ldots, n\}}$. Let $\tau_{i}: P_{i} \rightarrow$ I be a T-g-ideal for each $i=1,2, \ldots, n$ w.r.t. the t-norm T. Then the function $\tau: P \rightarrow I$ defined by

$$
\tau(\underline{a}):=T\left(\tau_{1}\left(a_{1}\right), \tau_{2}\left(a_{2}\right), \ldots, \tau_{n}\left(a_{n}\right)\right) \quad \forall \underline{a}:=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in P
$$

is a T-g-ideal on P if $\tau\left(\hat{0}_{P}\right)=T\left(\hat{0}_{P_{1}}, \hat{0}_{P_{2}}, \ldots, \hat{0}_{P_{n}}\right) \neq 0$.
Proof. Since $\tau\left(\hat{0}_{P}\right) \neq 0, \tau$ is a nonzero function. We will check the three conditions for τ to be a T-g-ideal.
(1) $\tau\left(\hat{1}_{P}\right)=T\left(\tau\left(\hat{1}_{P_{1}}\right), \tau\left(\hat{1}_{P_{2}}\right), \ldots, \tau\left(\hat{1}_{P_{n}}\right)\right)=T(0,0, \ldots, 0)=0$.
(2) Let $\underline{\mathrm{a}}\left(=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right) \leq \underline{\mathrm{b}}\left(=\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right) \in P$. Then $a_{i} \leq_{P_{i}} b_{i} \forall i=1,2, \ldots, n$. Now

$$
\tau(\underline{\mathrm{a}})=T\left(\tau_{1}\left(a_{1}\right), \tau_{2}\left(a_{2}\right), \ldots, \tau_{n}\left(a_{n}\right)\right) \geq T\left(\tau_{1}\left(b_{1}\right), \tau_{2}\left(b_{2}\right), \ldots, \tau_{n}\left(b_{n}\right)\right)
$$

$\left(\because \tau_{i}\left(a_{i}\right) \geq_{P_{i}} \tau_{i}\left(b_{i}\right)\right.$ for each i, and also T is monotonic in each of the coordinates $)=$ $\tau(\underline{b})$.
(3) Consider $\underline{\mathrm{a}}, \underline{\mathrm{b}} \in P$.

$$
\begin{aligned}
\tau(\underline{\mathrm{a}} \vee \underline{\mathrm{~b}}) & =\tau\left(a_{1} \vee_{P_{1}} b_{1}, \ldots, a_{i} \vee_{P_{i}} b_{i}, \ldots, a_{n} \vee_{P_{n}} b_{n}\right) \\
& =T\left(\tau\left(a_{1} \vee_{P_{1}} b_{1}\right), \ldots, \tau\left(a_{i} \vee_{P_{i}} b_{i}\right), \ldots, \tau\left(a_{n} \vee_{P_{n}} b_{n}\right)\right) \\
& \geq T\left(T\left(\tau_{1}\left(a_{1}\right), \tau_{1}\left(b_{1}\right)\right), \ldots, T\left(\tau_{i}\left(a_{i}\right), \tau_{i}\left(b_{i}\right)\right), \ldots, T\left(\tau_{n}\left(a_{n}\right), \tau_{1}\left(b_{n}\right)\right)\right. \\
& \left.=T\left(T\left(\tau_{1}\left(a_{1}\right), \ldots, \tau_{n}\left(a_{n}\right)\right), T\left(\tau_{1}\left(a_{1}\right), \ldots, \tau_{n}\left(a_{n}\right)\right) \tau_{1}\left(b_{1}\right)\right)\right) .
\end{aligned}
$$

Therefore τ is a T-g-ideal on P.
Conversely let $P:=\prod_{i=1}^{n} P_{i}$ be the direct product of n lattices $\left\{P_{i}\right\}_{\{i=1,2, \ldots, n\}}$. Let $\tau: P \rightarrow I$ be a T-g-ideal w.r.t. a t-norm T. Then can we derive some T-g-ideal on each P_{i} ?

The answer is affirmative which is our next theorem.
Theorem 4.2. Let $P:=\prod_{i=1}^{n} P_{i}$ be the direct product of n lattices $\left\{P_{i}\right\}_{\{i=1,2, \ldots, n\}}$. Let τ : $P \rightarrow I$ be a T-g-ideal on P w.r.t. a t-norm T. Assume that $\tau\left(\hat{0}_{P_{1}}, \hat{0}_{P_{2}}, \ldots, \hat{1}_{P_{i}}, \ldots, \hat{0}_{P_{n}}\right)=0$, $\forall i \in\left[n\left[\right.\right.$. For each $i \in\left[n\left[\right.\right.$, define $\tau_{i}: P_{i} \rightarrow I$ by $\tau_{i}\left(a_{i}\right)=\tau\left(\hat{0}_{P_{1}}, \hat{0}_{P_{2}}, \ldots, a_{i}, \ldots, \hat{0}_{P_{n}}\right)$ for each $a_{i} \in P_{i}$. Then τ_{i} defined this way is a T-g-ideal.
Proof. Since τ is a nonzero function, $\tau\left(\hat{0}_{P}\right)>0$ and hence $\tau_{i}\left(\hat{0}_{P_{i}}\right)=\tau\left(\hat{0}_{P_{1}}, \ldots, \hat{0}_{P_{i}}, \ldots, \hat{0}_{P_{n}}\right)=$ $\tau\left(\hat{0}_{P}\right)>0$.
(1) Now $\tau_{i}\left(\hat{1}_{P_{i}}\right)=\tau\left(\hat{0}_{P_{1}}, \ldots, \hat{1}_{P_{i}}, \ldots, \hat{0}_{P_{n}}\right)=0$.
(2) Let $a_{i} \leq_{P_{i}} b_{i}$. Then $\tau_{i}\left(a_{i}\right)=\tau\left(\hat{0}_{P_{1}}, \ldots, a_{i}, \ldots, \hat{0}_{P_{n}}\right) \geq \tau\left(\hat{0}_{P_{1}}, \ldots, b_{i}, \ldots, \hat{0}_{P_{n}}\right)=\tau_{i}\left(b_{i}\right)$.
(3) Let $a_{i}, b_{i} \in P_{i}$.

$$
\begin{aligned}
\tau_{i}\left(a_{i} \vee b_{i}\right) & =\tau\left(\hat{0}_{P_{1}}, \ldots, a_{i} \vee b_{i}, \ldots, \hat{0}_{P_{n}}\right) \\
& \geq T\left[\tau\left(\hat{0}_{P_{1}}, \ldots, a_{i}, \ldots, \hat{0}_{P_{n}}\right), \tau\left(\hat{0}_{P_{1}}, \ldots, b_{i}, \ldots, \hat{0}_{P_{n}}\right)\right] \\
& =T\left(\tau_{i}\left(a_{i}\right), \tau_{i}\left(b_{i}\right)\right) .
\end{aligned}
$$

Hence τ_{i} is a T-g-ideal on P_{i} for each i.
Definition 4.1. Let P be a complete lattice. A function $\tau: P \rightarrow I$ is called a T-g-preideal w.r.t. a t-norm T if
(TGP1) $\tau(\hat{1})>0$,
(TGP2) $a \leq b \Rightarrow \tau(a) \geq \tau(b), \quad \forall a, b \in P$,
(TGP3) $\tau(a \vee b) \geq T(\tau(a), \tau(b)) \quad \forall a, b \in P$.
Now we will consider the ordinal sum $P \oplus Q$ of two complete lattices P and Q.

Theorem 4.3. Let $P \oplus Q$ be the ordinal sum of two complete lattices P and Q with order relations as defined before. Let $\tau: P \rightarrow I$ be a T-g-preideal w.r.t. a t-norm T, and $\psi: Q \rightarrow I$ be a T-g-ideal w.r.t. the t-norm T such that $\tau(\hat{1}) \geq \psi(\hat{0})$. Then the function

$$
\tau \oplus \psi: P \oplus Q \rightarrow I
$$

defined by

$$
(\tau \oplus \psi)(x)= \begin{cases}\tau(x) & \text { if } x \in P \\ \psi(x) & \text { if } x \in Q\end{cases}
$$

is a T-g-ideal on $P \oplus Q$ w.r.t. the t-norm T.
Proof. (1) As the maximal element in $P \oplus Q$ is $\hat{1}_{Q},(\tau \oplus \psi)\left(\hat{1}_{Q}\right)=\psi\left(\hat{1}_{Q}\right)=0$.
(2) Let $x \leq_{P \oplus Q} y$, then three cases may arise. (a) $x, y \in P$ and $x \leq_{P} y$, but then $(\tau \oplus \psi)(x)=\tau(x) \geq \tau(y)=(\tau \oplus \psi)(y)$. (b) If $x, y \in Q$ and $x \leq_{Q} y$, then similar to above. (c) If $x \in P, y \in Q$, then $(\tau \oplus \psi)(x)=\tau(x) \geq \tau(\hat{1}) \geq \psi(\hat{0}) \geq \psi(y)=(\tau \oplus \psi)(y)$.
(3) Let $x, y \in P \oplus Q$. Here also we have to do for all the three cases. When $x, y \in P$ or $x, y \in Q$ then $\tau \oplus \psi$ coincides with τ or ψ respectively. Hence (TG-3) is satisfied. If $x \in P, y \in Q$, then $x \vee y=y$. Therefore, $(\tau \oplus \psi)(x \vee y)=(\tau \oplus \psi)(y)=\psi(y)$. Now $T((\tau \oplus \psi)(x),(\tau \oplus \psi)(y))=T(\tau(x), \psi(y)) \geq T(1, \psi(y))=\psi(y)=(\tau \oplus \psi)(x \vee y)$.
Therefore, $\tau \oplus \psi$ is a T-g-ideal.
The above theorem can be extended to the ordinal sum of finitely many complete lattices.

Theorem 4.4. Let $P:=\bigoplus_{i=1}^{n} P_{i}$ be the ordinal sum of n lattices $\left\{P_{i}\right\}_{\{i=1,2, \ldots, n\}}$. Let $\tau_{i}: P_{i} \rightarrow I$ be a T-g-preideal for each $i=1,2, \ldots, n-1$ w.r.t. a fixed t-norm T and $\tau_{n}: P_{n} \rightarrow I$ be a T-g-ideal w.r.t. the t-norm T such that $\tau_{1}(\hat{1}) \geq \tau_{2}(\hat{0}) \geq \tau_{2}(\hat{1}) \geq \cdots \geq \tau_{i}(\hat{0}) \geq \tau_{i}(\hat{1}) \geq \cdots \geq \tau_{n}(\hat{0})$. Then the function $\tau:=\left(\tau_{1} \oplus \tau_{2} \oplus \cdots \oplus \tau_{n}\right): P \rightarrow I$ defined by

$$
\tau(x)=\tau_{i}(x) \text { if } x \in P_{i}, i=1,2, \ldots, n
$$

Proof. The proof is similar to the Theorem 4.3.
Before going to the next theorem on ordinal sum of lattices here we write the definition of ordinal sum of a family of t-norms.
Definition 4.2. Let $\left(T_{\alpha}\right)_{\alpha \in \Lambda}$ be a family of t -norms and ($] a_{\alpha}, e_{\alpha}[)_{\alpha \in \Lambda}$ be a family of nonempty pairwise disjoint open subintervals of I. Then the t-norm $T: I^{2} \rightarrow I$ defined by

$$
T(x, y)= \begin{cases}a_{\alpha}+\left(e_{\alpha}-a_{\alpha}\right) \cdot T_{\alpha}\left(\frac{x-a_{\alpha}}{e_{\alpha}-a_{\alpha}}, \frac{y-a_{\alpha}}{e_{\alpha}-a_{\alpha}}\right) & \text { if }(x, y) \in\left[a_{\alpha}, e_{\alpha}\right]^{2} \tag{4.3}\\ \min (x, y) & \text { otherwise }\end{cases}
$$

is called the ordinal sum of the summands $\left\langle a_{\alpha}, e_{\alpha}, T_{\alpha}\right\rangle, \alpha \in \Lambda$, and is denoted by $T=\left(\left\langle a_{\alpha}, e_{\alpha}, T_{\alpha}\right\rangle\right)_{\alpha \in \Lambda}$.

For a proof that T defined in (4.3) is a t-norm see ([9] Theorem 3.43).
Theorem 4.5. Let $P:=\bigoplus_{i=1}^{n} P_{i}$ be the ordinal sum of n complete lattices P_{i} with order relations as defined before. Let $\tau_{i}: P_{i} \rightarrow I$ be a T-g-ideal w.r.t. t-norm T_{i}, for each $i=$
$1,2, \ldots, n$. Let $0=c_{0}<c_{1}<\cdots<c_{n-1}<c_{n}=1$ and consider the ordinal sum of the summands $\left\langle c_{n-i}, c_{n-i+1}, T_{i}\right\rangle, i=1,2, \ldots, n$, denoted by $T=\left(\left\langle c_{n-i}, c_{n-i+1}, T_{i}\right\rangle\right)_{i \in[n[}$. Then the function

$$
\phi: P \rightarrow I
$$

defined by

$$
\phi(x)=c_{n-i}+\left(c_{n-i+1}-c_{n-i}\right) \tau_{i}(x) \quad \text { for } x \in P_{i}
$$

is a T-g-ideal on P w.r.t. the t-norm T.
Proof. Clearly ϕ is nonzero.
(1) $\phi\left(\hat{1}_{P}\right)=\phi\left(\hat{1}_{P_{n}}\right)=c_{0}+\left(c_{1}-c_{0}\right) \tau_{n}\left(\hat{1}_{P_{n}}\right)=0$, as $c_{0}=0, \tau_{n}\left(\hat{1}_{P_{n}}\right)=0$.
(2) Let $x \leq_{P} y$, then two cases may arise.
(a) When $x, y \in P_{i}$ and $x \leq_{P_{i}} y$, so $\tau_{i}(x) \geq \tau_{i}(y)$ as τ_{i} is a T-g-ideal and we have $\phi(x)=c_{n-i}+\left(c_{n-i+1}-c_{n-i}\right) \tau_{i}(x) \geq c_{n-i}+\left(c_{n-i+1}-c_{n-i}\right) \tau_{i}(y)=\phi(y)$.
(b) When $x \in P_{i}, y \in P_{j}, i<j$, then $n-i \geq n-j+1$ and so $c_{n-i} \geq c_{n-j+1}$. Now

$$
\begin{aligned}
\phi(x) & =c_{n-i}+\left(c_{n-i+1}-c_{n-i}\right) \tau_{i}(x) \geq c_{n-j+1} \\
& =c_{n-j}+\left(c_{n-j+1}-c_{n-j}\right) \geq c_{n-j}+\left(c_{n-j+1}-c_{n-j}\right) \tau_{j}(y)=\phi(y) .
\end{aligned}
$$

Hence TG-2 is satisfied.
(3) Let $x, y \in P$. Here also we have to do for both the cases.
(a) When $x, y \in P_{i}$, then $x \vee y \in P_{i}$ and so
$\phi(x \vee y)=c_{n-i}+\left(c_{n-i+1}-c_{n-i}\right) \tau_{i}(x \vee y) \geq c_{n-i}+\left(c_{n-i+1}-c_{n-i}\right) T_{i}(\tau(x), \tau(y))$.
But by applying (4.3), we get

$$
\begin{aligned}
T(\phi(x), \phi(y)) & =T\left(c_{n-i}+\left(c_{n-i+1}-c_{n-i}\right) \tau_{i}(x), c_{n-i}+\left(c_{n-i+1}-c_{n-i}\right) \tau_{i}(y)\right) \\
& =c_{n-i}+\left(c_{n-i+1}-c_{n-i}\right) T_{i}(\tau(x), \tau(y))
\end{aligned}
$$

Hence $\phi(x \vee y) \geq T(\phi(x), \phi(y))$.
(b) When $x \in P_{i}, y \in P_{j}, i<j$, then $x \vee y=y \in P_{j}$ and $c_{n-i} \geq c_{n-j}$. Also $c_{n-i}+$ $\left(c_{n-i+1}-c_{n-i}\right) \tau_{i}(x) \geq c_{n-j}+\left(c_{n-j+1}-c_{n-j}\right) \tau_{j}(y)$.
Now $\phi(x \vee y)=c_{n-j}+\left(c_{n-j+1}-c_{n-j}\right) \tau_{j}(x \vee y)=c_{n-i}+\left(c_{n-j+1}-c_{n-j}\right) \tau_{j}(y)$, but

$$
\begin{aligned}
T(\phi(x), \phi(y)) & =T\left(c_{n-i}+\left(c_{n-i+1}-c_{n-i}\right) \tau_{i}(x), c_{n-j}+\left(c_{n-j+1}-c_{n-j}\right) \tau_{j}(y)\right) \\
& =\min \left(c_{n-i}+\left(c_{n-i+1}-c_{n-i}\right) \tau_{i}(x), c_{n-j}+\left(c_{n-j+1}-c_{n-j}\right) \tau_{j}(y)\right) \\
& =c_{n-j}+\left(c_{n-j+1}-c_{n-j}\right) \tau_{j}(y) .
\end{aligned}
$$

Hence $\phi(x \vee y) \geq T(\phi(x), \phi(y))$.
Hence (TG-3) is satisfied.
Therefore, ϕ is a T-g-ideal.
Notation: Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite set. Let $f: S \rightarrow I$, then we use the notation $\underset{(x, S)}{T}(f(x)):=T\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)$ in the following theorem.

Theorem 4.6. Let Q^{P} be the cardinal power of lattices as defined before. Let P and Q be finite. Let $\psi: Q \rightarrow I$ be a T-g-ideal w.r.t. the t-norm T and $\underset{(x, P)}{T}\left(\psi\left(\hat{0}_{Q^{P}}(x)\right)\right)>0$. Then the function $\psi^{*}: Q^{P} \rightarrow I$ defined by $\psi^{*}(f)=\underset{(x, P)}{T}(\psi(f(x)))$ is a T-g-ideal.

Proof. From the construction of ψ^{*}, we have $\psi^{*}\left(\hat{0}_{Q^{P}}\right)=\underset{(x, P)}{T}\left(\psi\left(\hat{0}_{Q^{P}}(x)\right)\right)>0$ (assumption on ψ). Hence ψ^{*} is a nonzero function.
(1) $\psi^{*}\left(\hat{1}_{Q^{P}}\right)=\stackrel{T}{(x, P)}\left(\psi\left(\hat{1}_{Q^{P}}(x)\right)\right)=0 \quad\left(\because \psi\left(\hat{1}_{Q^{P}}(y)\right)=\psi\left(\hat{1}_{Q}\right)=0 \quad \forall y \in P\right.$ and 0 is an annihilator for T).
(2) Let $f \leq_{Q^{P}} g$ where f, g are order preserving maps from P to Q. $f \leq_{Q^{P}} g \Rightarrow f(x) \leq$ $g(x) \forall(x, P) \Rightarrow \psi(f(x)) \geq \psi(g(x)) \forall x \in P$ using this result and the monotonicity of T in each coordinate, we have $\psi^{*}(f)=\underset{(x, P)}{T}(\psi(f(x))) \geq \underset{(x, P)}{T}(\psi(g(x)))=\psi^{*}(g)$.
(3) Let $f, g \in Q^{P}$, then

$$
\begin{aligned}
\psi^{*}(f \vee g) & =\begin{array}{c}
T \\
(x, P)
\end{array}(\psi((f \vee g)(x)))=\begin{array}{c}
T \\
(x, P)
\end{array}(\psi(f(x) \vee g(x))) \\
& \geq \begin{array}{c}
T \\
(x, P)
\end{array}(T(\psi(f(x)), \psi(g(x))))=T\left(\begin{array}{c}
T \\
(x, P)
\end{array}(\psi(f(x))), \begin{array}{c}
T \\
(x, P)
\end{array}(\psi(g(x)))\right) \\
& =T\left(\psi^{*}(f), \psi^{*}(g)\right) .
\end{aligned}
$$

Thus ψ^{*} is a T-g-ideal.
Theorem 4.7. Let P be a Boolean algebra. Let $\tau: P \rightarrow I$ be a T-g-ideal w.r.t. a t-norm T. Then the map $\tau^{*}: P^{*} \rightarrow I\left(P^{*}\right.$ is the dual Boolean algebra of $\left.P\right)$, defined by $\tau^{*}(x)=\tau\left(x^{\prime}\right)$ where, x^{\prime} is the complement of $x \in P$.

Proof. Since τ is nonzero, $\tau^{*}(x)$ is also nonzero.
(1) Note that $\hat{1}_{P^{*}}=\hat{0}_{P}$. Now $\tau^{*}\left(\hat{1}_{P^{*}}\right)=\tau^{*}\left(\hat{0}_{P}\right)=\tau\left(\hat{1}_{P}\right)=0$.
(2) Let $x \leq_{P^{*}} y \Rightarrow y \leq_{P} x \Rightarrow x^{\prime} \leq_{P} y^{\prime} \Rightarrow \tau\left(x^{\prime}\right) \geq \tau\left(y^{\prime}\right)$. So $\tau^{*}(x)=\tau\left(x^{\prime}\right) \geq \tau\left(y^{\prime}\right)=\tau^{*}(y)$.
(3) Finally let $x, y \in P^{*}, \tau^{*}\left(x \vee^{*} y\right)=\tau^{*}(x \wedge y)=\tau\left((x \wedge y)^{\prime}\right)=\tau\left(x^{\prime} \vee y^{\prime}\right) \geq T\left(\tau\left(x^{\prime}\right), \tau\left(y^{\prime}\right)\right)=$ $T\left(\tau^{*}(x), \tau^{*}(y)\right)$.
Thus τ^{*} is a T-g-ideal.
Theorem 4.8. Let P be a Boolean algebra. Let $\tau: P \rightarrow I$ be a T-g-ideal w.r.t. a t-norm T. Let $x \in P$, then the map $\left.\tau\right|_{x}:=\left.\tau\right|_{[\hat{0}, x]}:[\hat{0}, x] \rightarrow I$ defined by $\left.\tau\right|_{x}(y)=\tau(y) \quad \forall y \in[\hat{0}, x]$, is
(i) a T-g-ideal w.r.t. the t-norm T if $\tau(x)=0$,
(ii) otherwise a T-g-preideal w.r.t. the t-norm T.

Proof. The proof is easy and we omit it.
Theorem 4.9. Let P be a Boolean algebra. Let $\tau: P \rightarrow I$ be a T-g-ideal w.r.t. a t-norm T. Let $x \in P$, then the map $\left.\tau\right|^{x}:=\left.\tau\right|_{[x, \hat{1}]}:[x, \hat{1}] \rightarrow I$ defined by $\left.\tau\right|^{x}(y)=\tau(y) \quad \forall y \in[x, \hat{1}]$, is a T-g-ideal w.r.t. the t-norm T if $\tau(x)>0$.

Proof. The proof is easy and we omit it.

5. CONCLUSION

This paper deals with T-g-ideals for a completely distributive complete lattice with respect to a triangular norm. Examples of T-g-ideal with respect to different t-norms have been constructed. Existence of an atom with T-g-ideal value as zero is proved with respect to a t-norm with no zero divisors. Also T-g-ideals have been constructed on product lattices, ordinal sum of lattices, dual lattice, interval lattices etc. This research work can be extended to T-g-prime ideals, and study of their images, pre-images etc. Lattice ideal theory has application in domains and information systems. Concept analysis [8] provides a powerful technique in information science for classifying and analyzing compressed sets of data. It builds a partially ordered set which reveals inherent hierarchical structures and natural sub
grouping and dependencies among objects and attributes. The concept of T-g-ideal can be used in formal concept analysis, since a context with a suitable partial order becomes a complete lattice.

REFERENCES

[1] N. Ajmal and K. V. Thomas: Fuzzy lattices, Information Sciences, 79(1994), 271-291.
[2] N. Ajmal and K. V. Thomas: A complete study of the lattices of fuzzy congruences and normal subgroups, Information Sciences, 82 (1995), 197-218.
[3] N. Ajmal and K. V. Thomas: Fuzzy lattices I, J. Fuzzy Math., 10(2002), 255-274.
[4] N. Ajmal and K. V. Thomas: Fuzzy lattices II, J. Fuzzy Math., 10(2002), 275-295.
[5] A. M. Anthony and H. Sherwood: Fuzzy groups redefined, J. Math. Anal. Appl., 69(1979), 124-130.
[6] M. H. Burton, Muraleetharan and J. Gutierrez Garcia: Generalized filter 1, Fuzzy Sets and Systems, 106(1999), 275-284.
[7] M. H. Burton, Muraleetharan and J. Gutierrez Garcia: Generalized filter 2, Fuzzy Sets and Systems, 106(1999), 393-400.
[8] B. A. Dav and H. A. Priestley: Introduction to Lattices and Order, Cambridge University Press, 2002.
[9] E. P. Klement, R. Mesiar and E. Pap: Triangular Norms, in Trends in Logic, Studia Logica Library, Vol. 8, Kluwer Academic Publishers, Dordrecht, 2000.
[10] M. T. Osman Abu: On the direct product of fuzzy subgroups, Fuzzy Sets and Systems, 12(1984), 87-91.
[11] A. A. Ramadan, M. A. Abdel-Satter and Yong Chan Kim: Generalized ideals, J. Fuzzy Mathematics, 11(2003), 67-84.
[12] A. Rosenfeld: Fuzzy subgroups, J. Math. Anal. Appl., 35(1971), 512-517.
[13] B. Schweizer and A. Sklar: Statistical metric spaces, Pacific J. Math., 10(1960), 313-334.
[14] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, Amsterdam, 1983.
[15] B. Yuan and W. Wu: Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems, 35(1990), 231-240.
G. H. Patel College of Engg. and Tech.

Department of Mathematics
Gujarat, India
E-mail address: motilal.panigrahi@gmail.com
KIIT University
Department of Mathematics
Bhubaneswar, India
E-mail address: snanda.iitkgp@gmail.com
Indian Institute of Technology
Department of Mathematics
Kharagpur, India
E-mail address: geetanjali@maths.iitkgp.ernet.in

[^0]: Received: June 14, 2012. Revised: January 23, 2013.
 2010 Mathematics Subject Classification: 18B35, 06A75, 06B75, 06D75
 Key words and phrases: t-norm, generalized ideal, lattice, completely distributive complete lattice.

