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GENERALIZED IDEALS WITH A TRIANGULAR NORM

M. PANIGRAHI, S. NANDA AND G.PANDA

Abstract. The notion of generalized ideal is redefined with respect to a triangular norm
for a completely distributive complete lattice with a greatest element and least element
and the new mathematical object is termed as a T-g-ideal. We have furnished examples
of T-g-ideals with different t-norms and shown that a T-g-ideal with respect to one t-
norm may not be a T-g-ideal with respect to another t-norm. New T-g-ideals from old
ones have been constructed through various poset operations like product of lattices,
ordinal sum of lattices, dual of a lattice, interval of a lattice etc.

1. INTRODUCTION

In 1971 the concept of fuzzy subgroups was introduced by A. Rosenfeld [12] and sub-
sequently it was redefined with the help of t-norms by Anthony and Sherwood [5] and it
was named as t-fuzzy subgroups. Later many researchers have contributed to the study of
t-fuzzy subgroups. Yuan and Wu [15] applied the concept of fuzzy set in lattice theory and
introduced the notions of fuzzy sublattices and fuzzy ideals. Later on fuzzy lattices was
extensively studied by N. Ajmal [1-4]. Ideals are of fundamental importance in algebra. Fil-
ters, the order dual of lattice ideals have a variety of applications in logic and topology. M.
H. Burton et al. [6, 7] have generalized the notion of a filter and called the new mathemat-
ical object as a generalized filter. In [11] A. A. Ramadan et al. introduced generalized ideal
(Definition 2.3) (which was defined on a power set) is the dual of a generalized filter. Taking
motivation from [5], in this paper we define a generalized ideal for a completely distributive
complete lattice (with a greatest element and a least element) with respect to a triangular
norm (briefly a t-norm) and call it a T-g-ideal. We show with examples that T-g-ideals with
different t-norms exist and a T-g-ideal w.r.t. one t-norm may not be a T-g-ideal w.r.t. a
different t-norm. However, a T-g-ideal w.r.t. the minimum t-norm which is the strongest
t-norm is a T-g-ideal w.r.t. all other t-norms.

We organize our paper as follows. Section 1 is introduction. In Section 2 we recall some
relevant definitions, notation and results which will be needed in the sequel. In Section 3
we define a T-g-ideal and provide some examples. In Section 4 first we have recalled some
classes of lattices and constructed T-g-ideals on them from known T-g-ideals.

2. PRELIMINARIES

Let (P,≤,∨,∧, 1̂, 0̂) be a bounded completely distributive complete lattice with partial
order relation ≤, and the binary operations ∨,∧ respectively called join and meet are defined
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as a∨b ∶= sup{a, b} and a∧b ∶= inf{a, b} (a, b ∈ P ). The greatest element 1̂ (unique) has the

property that a ∨ 1̂ = 1̂ = 1̂ ∨ a ∀a ∈ P , and the least element 0̂ (unique) has the property

that a ∧ 0̂ = 0̂ = 0̂ ∧ a. Recall that the complete distributivity of P means the distributive
law ∨k∈J(ak ∧ a) = (∨k∈Jak) ∧ a holds. For a ∈ P , we say b ∈ P is a complement of a if

a ∨ b = 1̂ and a ∧ b = 0̂. A lattice P is called a Boolean algebra if (i) P is distributive, i.e.,

a∨(b∧c) = (a∨b)∧(a∨c)∀a, b, c ∈ P , (ii) P has 1̂, 0̂, (iii) each element a ∈ P has a (necessarily
unique) complement a′ ∈ P .

Throughout this paper we consider a lattice as a completely distributive complete lat-
tice.

The concept of t-norm was introduced in [13] while working on probabilistic metric
spaces. More details about t-norms and their applications can be found in the recent mono-
graphs [9] and [14]. As usual we write I to denote the closed unit interval [0,1]. The
definition of a t-norm is as follows:

Definition 2.1. A triangular norm (t-norm, for short) is a function T ∶ I × I → I such that∀x, y, z ∈ I:
(1) T (x,1) = x (boundary condition);
(2) T (x, y) = T (y, x) (commutativity);
(3) x ≤ y⇒ T (x, z) ≤ T (y, z) (monotonicity);
(4) T (x,T (y, z)) = T (T (x, y), z) (associativity).
It is clear that T (x,0) = T (0, x) = 0 ∀x ∈ I, i.e. 0 is the annihilator.
For a t-norm T an element a ∈]0,1[ is called a zero divisor of T if there exists some

b ∈]0,1[ such that T (a, b) = 0.
The examples of t-norms which are frequently used in a fuzzy setting are the following:

(1) (Minimum norm) TM(x, y) =min{x, y} ∀x, y ∈ I;
(2) (Product norm) TP (x, y) = xy ∀x, y ∈ I;
(3) (Lukasiewicz norm) TL(x, y) =max{x + y − 1,0} ∀x, y ∈ I.

Definition 2.2 ([13]). A t-norm T1 is stronger than a t-norm T2, if and only if
T1(x, y) ≥ T2(x, y) ∀x, y ∈ I.
Lemma 2.1 ([13]). TM is the strongest of all t-norms.

The function T is defined on I×I. However the domain of the function can be generalized
to In (see [10]). The commutativity and associativity of a t-norm T ensures its unique n-ary
extension which will be denoted by Tn, i.e.,

Tn(x1, x2, . . . , xn) = Tn(xi, Tn−1(x1, x2, . . . , xi−1, xi+1, . . . , xn))
for all 1 ≤ i ≤ n, where n ≥ 2, T2 = T . Also the following may be noted.

(1) Tn(x1, x2, . . . , xn) = 0 if xj = 0 for some j,1 ≤ j ≤ n.
(2) If xj = 1, then

Tn(x1, x2, . . . , xn) = Tn−1(x1, x2, . . . , xj−1, xj+1, . . . , xn)).
Hence Tn(x1, x2, . . . , xn) = xi if xj = 1 ∀j ≠ i.

(3) For α a permutation of {x1, x2, . . . , xn}, we have

Tn(x1, x2, . . . , xn) = Tn(α(x1, x2, . . . , xn)).
(4) Tn(x1, x2, . . . , xn) ≤ Tn(x1, x2, . . . , xj−1, x∗j , xj+1, . . . , xn) if xj ≤ x∗j for some

j,1 ≤ j ≤ n.
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(5) Tn(x1, . . . , xn−1, Tn(y1, . . . , yn)) = Tn(x1, . . . , xn−2, Tn(xn−1, y1, . . . , yn−1), yn).
(6) Let ai, bi ∈ I ∀i,1 ≤ i ≤ n and n ≥ 2. Then
Tn(T (a1, b1), T (a2, b2), . . . , T (an, bn)) = T (Tn(a1, a2, . . . , an), Tn(b1, b2, . . . , bn)).

However in this paper we will write T instead of Tn.

Definition 2.3 ([11]). Let X be a nonempty set. Let P = P(X) be the power set of X .
A nonzero function d∶P → I is called a generalized-ideal (g-ideal, for short) if the following
conditions are satisfied:

(G1) d(X) = 0,
(G2) A ⊂ B ⇒ d(A) ≥ d(B), ∀A,B ∈ P,
(G3) d(A ∪B) ≥ d(A) ∧ d(B)) ∀A,B ∈ P.

3. T-G-IDEAL

Definition 3.1. Let P be a lattice. A nonzero function τ ∶P → I is called a T-generalized-
ideal (T-g-ideal for short) w.r.t. a t-norm T if the following conditions are satisfied:

(TG-1) τ(1̂) = 0,
(TG-2) a ≤ b⇒ τ(a) ≥ τ(b), ∀a, b ∈ P,
(TG-3) τ(a ∨ b) ≥ T (τ(a), τ(b)) ∀a, b ∈ P.

Remark 3.1. By Lemma 2.1 and (TG-3), we can note that if τ is a T-g-ideal w.r.t. TM then
for any t-norm T , τ is also a T-g-ideal w.r.t. T . Also note that since τ is nonzero, condition
(TG-2) suggests that τ(0̂) = sup

a∈P
τ(a) > 0. When T is the minimum t-norm, conditions

(TG-2) and (TG-3) become equivalent to the condition

τ(a ∨ b) = T (τ(a), τ(b)) ∀a, b ∈ P. (3.1)

But for any other t-norm (TG-2) and (TG-3) may not be equivalent to (3.1), which may be
verified from the following example.

Example 3.1. Consider the Lukasiewicz t-norm, TL:

TL(x, y) =max{x + y − 1,0} ∀a, b ∈ I.
Let X = [n[∶= {1,2, . . . , n} for some fixed n ∈ IN (where IN is the set of natural numbers).
Let P = P(X), the power set of X , which is a lattice, with set inclusion as the order relation,

and 1̂ ∶= [n[ and 0̂ ∶= φ. Define τ ∶ P → I as follows:

τ(A) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 −
∑
i∈A

i

m
if A ∈ P,A ≠ φ, where m = n(n + 1)/2

1 if A = φ.

Then clearly τ(1̂) = τ([n[) = 1−
∑
i∈[n[

i

m
= 1−m

m
= 0. Let A ⊆ B ∈ P , implies that τ(A) ≥ τ(B),

since ∑
i∈A

i ≤ ∑
i∈B

i⇒ 1 −
∑
i∈A

i

m
≥ 1 −

∑
i∈B

i

m
⇒ τ(A) ≥ τ(B).

To prove condition (TG-3), let A,B ∈ P . Two cases may arise (i) A ∩ B = φ, or, (ii)
A ∩B ≠ φ.
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(i) If A ∩ B = φ, let ∑
i∈A

i = p,∑
i∈B

i = q, then ∑
i∈A

∪Bi = p + q. Hence τ(A) = 1 − p

m
,

τ(B) = 1− q
m

and τ(A∪B) = 1− p + q
m

. Now TL(τ(A), τ(B)) =max{1− p
m
+ 1− q

m
− 1,0} =

max{1 − p
m
− q

m
,0} = 1 − p + q

m
(since p + q ≤m).

(ii) If A ∩B ≠ φ, let ∑
i∈A

i = p,∑
i∈B

i = q, then ∑
i∈A∪B

i = p + q − r, where r = ∑
i∈A∩B

i > 0. Note
that p + q − r ≤ m. Hence τ(A) = 1 − p

m
, τ(B) = 1 − q

m
and τ(A ∪ B) = 1 − p + q − r

m
. Now

TL(τ(A), τ(B)) = max{1 − p

m
− q

m
,0} = k(say). If 1 − p + q

m
< 0, then k = 0 and (TG-3) is

satisfied. If 1 − p + q
m
≥ 0, then
k = 1 − p + q

m
< 1 − p + q − r

m
( as r > 0) (3.2)

Thus in all the cases condition (TG-3) is satisfied.
Hence τ is a T-g-ideal w.r.t. TL.

Remark 3.2. Note (eqn. (3.2)) when A ∩B ≠ φ, TL(τ(A), τ(B)) < τ(A ∪B).
The strict inequality is obtained for TL-norm, which is not the case for a T-g-ideal w.r.t.

minimum t-norm. This also suggests that the function τ defined above is not a T-g-ideal
w.r.t. minimum t-norm.

In fact τ is also not a T-g-ideal w.r.t. product t-norm. In Theorem 3.1 we will show
why this happened.

For a function τ ∶P → I and a ∈ P, we use the following notation [11]

⟨τ⟩(a) ∶= ∨
a ≤ bτ(b)

Definition 3.2. Let P be a lattice. A nonzero function τ ∶P → I is called a T-generalized-
ideal base (T-g-IB for short) w.r.t. a t-norm T if the following conditions are satisfied:

(TGB1) τ(1̂) = 0,
(TGB2) ⟨τ⟩(a ∨ b) ≥ T (τ(a), τ(b)) ∀a, b ∈ P.

Evidently, a T-g-ideal is a T-g-IB.
The following propositions are immediate.

Proposition 3.1. If a function τ ∶ P → I is a T-g-IB, then ⟨τ⟩ is a T-g-ideal.

Proposition 3.2. A T-g-IB τ ∶ P → I is a T-g-ideal if and only if τ = ⟨τ⟩.
We furnish an example to show that a T-g-IB may not be a T-g-ideal.

Example 3.2. Let X = [4[. Let P = P (X). We define a function τ ∶P → I as follows:

τ(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/3 if A = φ
1/4 if A = {1}
1/3 if A = {2}
1/6 if A = {3}
1/6 if A = {1,2}
1/5 if A = {1,3}
1/4 if A = {2,3}
0 otherwise.
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Here {3} ⊂ {1,3} but τ({3}) = 1/6 < 1/5 = τ({1,3}). Hence τ is not a T-g-ideal w.r.t any
t-norm. But it can be easily checked that τ is a T-g-IB w.r.t. TL. Note that TL(x, y) = 0,∀x, y ≤ 0.5.

But

⟨τ⟩(A) = { 1/4 if A = {3}
τ(A) otherwise

is a T-g-ideal w.r.t. TL.
But still then ⟨τ⟩ is not a T-g-ideal w.r.t. minimum t-norm. Since

min(⟨τ⟩({1}), ⟨τ⟩({2})) =min(1/4,1/3) = 1/4.
But min⟨τ⟩({1} ∪ {2}) = ⟨τ⟩({1,2}) = 1/6 < 1/4.

However, ⟨τ⟩ is a T-g-ideal w.r.t. product t-norm.

Here we present a theorem on T-g-ideal w.r.t. product t-norm.
Let P be a lattice and let x, y ∈ P . We say x is covered by y (or y covers x) and

denoted by x ↼ y or (y ⇀ x), if x < y and x ≤ z < y implies z = x. That means there can be

no elements z of P with x < z < y. Let 0̂ be the least element of P . Then a ∈ P is called an
atom if 0 ↼ a. The set of atoms of P is denoted by A(P ). The lattice P is called atomic
if given a ≠ 0 in P , ∃x ∈ A(P ) such that x ≤ a. Every finite lattice is atomic. By contrast,
it may happen that an infinite lattice has no atom at all. The chain of non-negative real
numbers provides an example. Even a Boolean lattice may have no atoms (see [8].)

Theorem 3.1. Let P be a finite Boolean algebra. Let τ ∶ P → I be a T-g-ideal w.r.t a t-norm
with no zero divisors. Then there exists a ∈ A(P ) such that τ(b) = 0 ∀b ≥ a ∈ P .
Proof. If there exists a ∈ A(P ) such that τ(a) = 0 then by condition (TG-2), we have
τ(b) = 0 ∀b ≥ a ∈ P. Therefore we only have to prove the existence of a ∈ A(P ) with
τ(a) = 0.

We note that a finite Boolean algebra is always a join of its atoms (finitely many). Let

a1, a2, . . . , an be all the atoms of P . Then 1̂ = a1∨a2∨ . . .∨an. By TG-3, τ(a1∨a2∨ . . .∨an) ≥
T (τ(a1), τ(a2), . . . τ(an)).

Since T is a t-norm with no zero divisors, and 0 = τ(1̂) = τ(a1 ∨ a2 ∨ . . . ∨ an) =
T (τ(a1), τ(a2), . . . τ(an), therefore, there exists at least one atom aj = 0. �

The following example justifies the Theorem 3.1.

Example 3.3. Let Y = [3[= {1,2,3}. Let P = P(Y ) be the power set of Y . Define τ ∶P → I
as follows:

τ(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/3 if A = φ
1/4 if A = {1}
1/3 if A = {2}
1/4 if A = {3}
1/6 if A = {1,2}
1/5 if A = {1,3}
1/4 if A = {2,3}
0 otherwise.

Note that τ(a) ≠ 0 for all A(P ) = {{1},{2},{3}}. By Theorem 3.1 τ can not be a T-g-ideal
w.r.t. the product norm TP .

Now reconstruct the above example as follows:
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Let X = Y ∪ {4} = {1,2,3,4} and define ψ ∶ P(X) → I by

ψ(A) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ(A) if A ⫋ Y
1/6 if A = Y
0 otherwise.

It can be easily verified that ψ is a T-g-ideal.

4. CONSTRUCTION OF T-G-IDEALS

Suppose P and Q are two lattices with partial orders ≤P and ≤Q respectively. Similarly

we will use the notations ∨P ,∧P , 1̂P , 0̂P etc. for join, meet, greatest element, least element
respectively, with subscript as the corresponding lattice. When there is no confusion we
might omit the subscript at places. In general {Pi}{i=1,2,...,n} be lattices with partial order
relations ≤Pi .

Here we consider the following lattices (see [8]) to construct T-g-ideals on them.

(1) The direct product P ×Q is a lattice on the product set with the order relation

(x1, y1) ≤ (x2, y2) in P ×Q iff x1 ≤P x2 and y1 ≤Q y2
also (x1, y1) ∨ (x2, y2) = (x1 ∨P x2, y1 ∨Q y2) similarly the meet operation can be

defined. Here note that 1̂P×Q ∶= (1̂P , 1̂Q), and 0̂P×Q ∶= (0̂P , 0̂Q).
(2) Similarly the direct product P ∶= ∏ni=1 Pi of n lattices {Pi}{i=1,2,...,n} can be defined.
(3) The ordinal sum P ⊕Q is a lattice on the disjoint union of P and Q with the order

relation x ≤ y in P ⊕Q iff one of (a) x, y ∈ P and x ≤P y, or (b) x, y ∈ Q and x ≤Q y,
or(c) x ∈ P and y ∈ Q holds good.

Here 1̂P⊕Q = 1̂Q, 0̂P⊕Q = 0̂P .
(4) Similarly the ordinal sum ⊕ni=1Pi ∶= P1 ⊕ P2 ⊕ ⋯ ⊕ Pn of n lattices {Pi}i=1,2,...,n}

is a lattice on the disjoint union of Pi’s with order relation as follows: x ≤ y in⊕ni=1Pi iff (a) x, y ∈ Pi for some i, and x ≤Pi y or (b) x ∈ Pi, y ∈ Pj and i < j. Also
1̂⊕n

i=1
Pi ∶= 1̂Pn , 0̂⊕n

i=1
Pi ∶= 0̂P1 .

(5) The cardinal power QP is the lattice on the set of order preserving maps f ∶ P →Q
(i.e. ∀x1, x2 ∈ P,x1 ≤P x2 ⇒ f(x1) ≤Q f(x2)), with partial order relation:

f ≤ g in QP iff f(x) ≤Q g(x) ∀x ∈ P.
The greatest element in QP is the map 1̂QP ∶P → Q defined by 1̂QP (x) = 1̂Q ∀x ∈

P . Similarly the least element in QP is the map 0̂QP ∶P → Q defined by 0̂QP (x) = 0̂Q,∀x ∈ P.
(6) The dual lattice P ∗ of P is a lattice on the same set P with order relation x ≤P ∗ y

iff y ≤P x. Thus 1̂P ∗ ∶= 0̂P , 0̂P ∗ ∶= 1̂P , x ∨∗ y ∶= x ∧ y and x ∧∗ y ∶= x ∨ y.
If x′ is the complement of x in P , i.e. x∨x′ = 1̂P and x∧x′ = 0̂P then x′ is also the

complement of x in P ∗, with x∨∗x′ = 1̂P ∗ = 0̂P = x∧x′ and x∧∗x′ = 0̂P ∗ = 1̂P = x∨x′.
(7) Let P be a lattice. Let x ∈ P . Then both the intervals [0̂, x] and [x, 1̂] are sublattices

of P .

Theorem 4.1. Let P ∶= n∏
i=1

Pi be the direct product of n lattices {Pi}{i=1,2,...,n}. Let τi ∶ Pi →
I be a T-g-ideal for each i = 1,2, . . . , n w.r.t. the t-norm T . Then the function τ ∶ P → I
defined by

τ(a) ∶= T (τ1(a1), τ2(a2), . . . , τn(an)) ∀a ∶= (a1, a2, . . . , an) ∈ P



122 Motilal Panigrahi, S. Nanda and G. Panda

is a T-g-ideal on P if τ(0̂P ) = T (0̂P1, 0̂P2 , . . . , 0̂Pn) ≠ 0.
Proof. Since τ(0̂P ) ≠ 0, τ is a nonzero function. We will check the three conditions for τ to
be a T-g-ideal.

(1) τ(1̂P ) = T (τ(1̂P1), τ(1̂P2), . . . , τ(1̂Pn)) = T (0,0, . . . ,0) = 0.
(2) Let a(= (a1, a2, . . . , an)) ≤ b(= (b1, b2, . . . , bn)) ∈ P. Then ai ≤Pi bi∀i = 1,2, . . . , n.

Now

τ(a) = T (τ1(a1), τ2(a2), . . . , τn(an)) ≥ T (τ1(b1), τ2(b2), . . . , τn(bn))
(∵τi(ai) ≥ Piτi(bi) for each i, and also T is monotonic in each of the coordinates) =
τ(b).

(3) Consider a,b ∈ P .
τ(a ∨ b) = τ(a1 ∨P1 b1, . . . , ai ∨Pi bi, . . . , an ∨Pn bn)= T (τ(a1 ∨P1 b1), . . . , τ(ai ∨Pi bi), . . . , τ(an ∨Pn bn))≥ T (T (τ1(a1), τ1(b1)), . . . , T (τi(ai), τi(bi)), . . . , T (τn(an), τ1(bn))

= T (T (τ1(a1), . . . , τn(an)), T (τ1(a1), . . . , τn(an))τ1(b1))).
Therefore τ is a T-g-ideal on P . �

Conversely let P ∶= n∏
i=1

Pi be the direct product of n lattices {Pi}{i=1,2,...,n}. Let τ ∶P → I
be a T-g-ideal w.r.t. a t-norm T . Then can we derive some T-g-ideal on each Pi?

The answer is affirmative which is our next theorem.

Theorem 4.2. Let P ∶= n∏
i=1

Pi be the direct product of n lattices {Pi}{i=1,2,...,n}. Let τ ∶
P → I be a T-g-ideal on P w.r.t. a t-norm T . Assume that τ(0̂P1 , 0̂P2 , . . . , 1̂Pi , . . . , 0̂Pn) = 0,∀i ∈ [n[. For each i ∈ [n[, define τi ∶ Pi → I by τi(ai) = τ(0̂P1 , 0̂P2 , . . . , ai, . . . , 0̂Pn) for each
ai ∈ Pi. Then τi defined this way is a T-g-ideal.

Proof. Since τ is a nonzero function, τ(0̂P )>0 and hence τi(0̂Pi)=τ(0̂P1 , . . . , 0̂Pi , . . . , 0̂Pn) =
τ(0̂P ) > 0.

(1) Now τi(1̂Pi) = τ(0̂P1 , . . . , 1̂Pi , . . . , 0̂Pn) = 0.
(2) Let ai ≤Pi bi. Then τi(ai) = τ(0̂P1 , . . . , ai, . . . , 0̂Pn) ≥ τ(0̂P1 , . . . , bi, . . . , 0̂Pn) = τi(bi).
(3) Let ai, bi ∈ Pi.

τi(ai ∨ bi) = τ(0̂P1 , . . . , ai ∨ bi, . . . , 0̂Pn)
≥ T [τ(0̂P1 , . . . , ai, . . . , 0̂Pn), τ(0̂P1 , . . . , bi, . . . , 0̂Pn)]= T (τi(ai), τi(bi)).

Hence τi is a T-g-ideal on Pi for each i. �

Definition 4.1. Let P be a complete lattice. A function τ ∶ P → I is called a T-g-preideal
w.r.t. a t-norm T if

(TGP1) τ(1̂) > 0,
(TGP2) a ≤ b⇒ τ(a) ≥ τ(b), ∀a, b ∈ P,
(TGP3) τ(a ∨ b) ≥ T (τ(a), τ(b)) ∀a, b ∈ P.
Now we will consider the ordinal sum P ⊕Q of two complete lattices P and Q.
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Theorem 4.3. Let P ⊕Q be the ordinal sum of two complete lattices P and Q with order
relations as defined before. Let τ ∶ P → I be a T-g-preideal w.r.t. a t-norm T , and ψ ∶ Q→ I
be a T-g-ideal w.r.t. the t-norm T such that τ(1̂) ≥ ψ(0̂). Then the function

τ ⊕ψ ∶ P ⊕Q→ I
defined by

(τ ⊕ ψ)(x) = { τ(x) if x ∈ P
ψ(x) if x ∈ Q

is a T-g-ideal on P ⊕Q w.r.t. the t-norm T .

Proof. (1) As the maximal element in P ⊕Q is 1̂Q, (τ ⊕ ψ)(1̂Q) = ψ(1̂Q) = 0.
(2) Let x ≤P⊕Q y, then three cases may arise. (a) x, y ∈ P and x ≤P y, but then(τ ⊕ ψ)(x) = τ(x) ≥ τ(y) = (τ ⊕ ψ)(y). (b) If x, y ∈ Q and x ≤Q y, then similar to

above. (c) If x ∈ P, y ∈ Q, then (τ ⊕ψ)(x) = τ(x) ≥ τ(1̂) ≥ ψ(0̂) ≥ ψ(y) = (τ ⊕ψ)(y).
(3) Let x, y ∈ P ⊕Q. Here also we have to do for all the three cases. When x, y ∈ P or

x, y ∈ Q then τ ⊕ ψ coincides with τ or ψ respectively. Hence (TG-3) is satisfied. If
x ∈ P, y ∈ Q, then x ∨ y = y. Therefore, (τ ⊕ ψ)(x ∨ y) = (τ ⊕ ψ)(y) = ψ(y). Now
T ((τ ⊕ ψ)(x), (τ ⊕ ψ)(y)) = T (τ(x), ψ(y)) ≥ T (1, ψ(y)) = ψ(y) = (τ ⊕ ψ)(x ∨ y).

Therefore, τ ⊕ψ is a T-g-ideal. �

The above theorem can be extended to the ordinal sum of finitely many complete
lattices.

Theorem 4.4. Let P ∶= n⊕
i=1

Pi be the ordinal sum of n lattices {Pi}{i=1,2,...,n}. Let τi∶Pi → I
be a T-g-preideal for each i = 1,2, . . . , n − 1 w.r.t. a fixed t-norm T and τn ∶ Pn → I be a
T-g-ideal w.r.t. the t-norm T such that τ1(1̂) ≥ τ2(0̂) ≥ τ2(1̂) ≥ ⋯ ≥ τi(0̂) ≥ τi(1̂) ≥ ⋯ ≥ τn(0̂).
Then the function τ ∶= (τ1 ⊕ τ2 ⊕⋯⊕ τn) ∶ P → I defined by

τ(x) = τi(x) if x ∈ Pi, i = 1,2, . . . , n
Proof. The proof is similar to the Theorem 4.3. �

Before going to the next theorem on ordinal sum of lattices here we write the definition
of ordinal sum of a family of t-norms.

Definition 4.2. Let (Tα)α∈Λ be a family of t-norms and (]aα, eα[)α∈Λ be a family of non-
empty pairwise disjoint open subintervals of I. Then the t-norm T ∶ I2 → I defined by

T (x, y) =
⎧⎪⎪⎨⎪⎪⎩
aα + (eα − aα) ⋅ Tα ( x − aα

eα − aα ,
y − aα
eα − aα ) if (x, y) ∈ [aα, eα]2,

min(x, y) otherwise
(4.3)

is called the ordinal sum of the summands ⟨aα, eα, Tα⟩, α ∈ Λ, and is denoted by
T = (⟨aα, eα, Tα⟩)α∈Λ.

For a proof that T defined in (4.3) is a t-norm see ([9] Theorem 3.43).

Theorem 4.5. Let P ∶= n⊕
i=1

Pi be the ordinal sum of n complete lattices Pi with order

relations as defined before. Let τi ∶ Pi → I be a T-g-ideal w.r.t. t-norm Ti, for each i =



124 Motilal Panigrahi, S. Nanda and G. Panda

1,2, . . . , n. Let 0 = c0 < c1 < ⋯ < cn−1 < cn = 1 and consider the ordinal sum of the summands⟨cn−i, cn−i+1, Ti⟩, i = 1,2, . . . , n, denoted by T = (⟨cn−i, cn−i+1, Ti⟩)i∈[n[. Then the function

φ ∶ P → I
defined by

φ(x) = cn−i + (cn−i+1 − cn−i)τi(x) for x ∈ Pi
is a T-g-ideal on P w.r.t. the t-norm T .

Proof. Clearly φ is nonzero.

(1) φ(1̂P ) = φ(1̂Pn) = c0 + (c1 − c0)τn(1̂Pn) = 0, as c0 = 0, τn(1̂Pn) = 0.
(2) Let x ≤P y, then two cases may arise.

(a) When x, y ∈ Pi and x ≤Pi y, so τi(x) ≥ τi(y) as τi is a T-g-ideal and we have
φ(x) = cn−i + (cn−i+1 − cn−i)τi(x) ≥ cn−i + (cn−i+1 − cn−i)τi(y) = φ(y).

(b) When x ∈ Pi, y ∈ Pj , i < j, then n − i ≥ n − j + 1 and so cn−i ≥ cn−j+1. Now
φ(x) = cn−i + (cn−i+1 − cn−i)τi(x) ≥ cn−j+1

= cn−j + (cn−j+1 − cn−j) ≥ cn−j + (cn−j+1 − cn−j)τj(y) = φ(y).
Hence TG-2 is satisfied.

(3) Let x, y ∈ P . Here also we have to do for both the cases.
(a) When x, y ∈ Pi, then x ∨ y ∈ Pi and so

φ(x ∨ y) = cn−i + (cn−i+1 − cn−i)τi(x ∨ y) ≥ cn−i + (cn−i+1 − cn−i)Ti(τ(x), τ(y)).
But by applying (4.3), we get

T (φ(x), φ(y)) = T (cn−i + (cn−i+1 − cn−i)τi(x), cn−i + (cn−i+1 − cn−i)τi(y))
= cn−i + (cn−i+1 − cn−i)Ti(τ(x), τ(y)).

Hence φ(x ∨ y) ≥ T (φ(x), φ(y)).
(b) When x ∈ Pi, y ∈ Pj , i < j, then x ∨ y = y ∈ Pj and cn−i ≥ cn−j . Also cn−i +(cn−i+1 − cn−i)τi(x) ≥ cn−j + (cn−j+1 − cn−j)τj(y).

Now φ(x ∨ y) = cn−j + (cn−j+1 − cn−j)τj(x ∨ y) = cn−i + (cn−j+1 − cn−j)τj(y), but
T (φ(x), φ(y)) = T (cn−i + (cn−i+1 − cn−i)τi(x), cn−j + (cn−j+1 − cn−j)τj(y))

= min(cn−i + (cn−i+1 − cn−i)τi(x), cn−j + (cn−j+1 − cn−j)τj(y))
= cn−j + (cn−j+1 − cn−j)τj(y).

Hence φ(x ∨ y) ≥ T (φ(x), φ(y)).
Hence (TG-3) is satisfied.

Therefore, φ is a T-g-ideal. �

Notation: Let S = {x1, x2, . . . , xn} be a finite set. Let f ∶S → I, then we use the

notation T
(x,S)
(f(x)) ∶= T (f(x1), f(x2), . . . , f(xn)) in the following theorem.

Theorem 4.6. Let QP be the cardinal power of lattices as defined before. Let P and Q be
finite. Let ψ ∶ Q → I be a T-g-ideal w.r.t. the t-norm T and T

(x,P )
(ψ(0̂QP (x))) > 0. Then

the function ψ∗ ∶ QP → I defined by ψ∗(f) = T
(x,P )
(ψ(f(x))) is a T-g-ideal.

Proof. From the construction of ψ∗, we have ψ∗(0̂QP ) = T
(x,P )
(ψ(0̂QP (x))) > 0 (assumption

on ψ). Hence ψ∗ is a nonzero function.
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(1) ψ∗(1̂QP ) = T
(x,P )
(ψ(1̂QP (x))) = 0 (∵ψ(1̂QP (y)) = ψ(1̂Q) = 0 ∀y ∈ P and 0 is an

annihilator for T ).
(2) Let f ≤QP g where f, g are order preserving maps from P to Q. f ≤QP g ⇒ f(x) ≤

g(x)∀(x,P ) ⇒ ψ(f(x)) ≥ ψ(g(x))∀x ∈ P using this result and the monotonicity of

T in each coordinate, we have ψ∗(f) = T
(x,P )
(ψ(f(x))) ≥ T

(x,P )
(ψ(g(x))) = ψ∗(g).

(3) Let f, g ∈ QP , then
ψ∗(f ∨ g) = T

(x,P )(ψ((f ∨ g)(x))) =
T

(x,P )(ψ(f(x) ∨ g(x)))
≥ T

(x,P )(T (ψ(f(x)), ψ(g(x)))) = T (
T

(x,P )(ψ(f(x))),
T

(x,P )(ψ(g(x))))
= T (ψ∗(f), ψ∗(g)).

Thus ψ∗ is a T-g-ideal. �

Theorem 4.7. Let P be a Boolean algebra. Let τ ∶ P → I be a T-g-ideal w.r.t. a t-norm T .
Then the map τ∗ ∶ P ∗ → I (P ∗ is the dual Boolean algebra of P ), defined by τ∗(x) = τ(x′)
where, x′ is the complement of x ∈ P .
Proof. Since τ is nonzero, τ∗(x) is also nonzero.

(1) Note that 1̂P ∗ = 0̂P . Now τ∗(1̂P ∗) = τ∗(0̂P ) = τ(1̂P ) = 0.
(2) Let x ≤P ∗ y⇒ y ≤P x⇒ x′ ≤P y′ ⇒ τ(x′) ≥ τ(y′). So τ∗(x) = τ(x′) ≥ τ(y′) = τ∗(y).
(3) Finally let x, y ∈ P ∗, τ∗(x∨∗y) = τ∗(x∧y) = τ((x∧y)′) = τ(x′∨y′) ≥ T (τ(x′), τ(y′)) =

T (τ∗(x), τ∗(y)).
Thus τ∗ is a T-g-ideal. �

Theorem 4.8. Let P be a Boolean algebra. Let τ ∶ P → I be a T-g-ideal w.r.t. a t-norm T .
Let x ∈ P , then the map τ ∣x ∶= τ ∣[0̂,x] ∶ [0̂, x] → I defined by τ ∣x(y) = τ(y) ∀y ∈ [0̂, x], is

(i) a T-g-ideal w.r.t. the t-norm T if τ(x) = 0,
(ii) otherwise a T-g-preideal w.r.t. the t-norm T .

Proof. The proof is easy and we omit it. �

Theorem 4.9. Let P be a Boolean algebra. Let τ ∶ P → I be a T-g-ideal w.r.t. a t-norm T .
Let x ∈ P , then the map τ ∣x ∶= τ ∣[x,1̂] ∶ [x, 1̂] → I defined by τ ∣x(y) = τ(y) ∀y ∈ [x, 1̂], is a

T-g-ideal w.r.t. the t-norm T if τ(x) > 0.
Proof. The proof is easy and we omit it. �

5. CONCLUSION

This paper deals with T-g-ideals for a completely distributive complete lattice with
respect to a triangular norm. Examples of T-g-ideal with respect to different t-norms have
been constructed. Existence of an atom with T-g-ideal value as zero is proved with respect
to a t-norm with no zero divisors. Also T-g-ideals have been constructed on product lattices,
ordinal sum of lattices, dual lattice, interval lattices etc. This research work can be extended
to T-g-prime ideals, and study of their images, pre-images etc. Lattice ideal theory has
application in domains and information systems. Concept analysis [8] provides a powerful
technique in information science for classifying and analyzing compressed sets of data. It
builds a partially ordered set which reveals inherent hierarchical structures and natural sub
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grouping and dependencies among objects and attributes. The concept of T-g-ideal can be
used in formal concept analysis, since a context with a suitable partial order becomes a
complete lattice.
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