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a b s t r a c t

This paper proposes an effective oppositional Real Coded Chemical Reaction algorithm (ORCCRO) to solve
Economic Load Dispatch (ELD) problems involving different equality and inequality constraints. Effects of
valve-point loading, multi-fuel options of large-scale thermal plants are also studied. System transmis-
sion loss has also been considered in few cases. Chemical Reaction Optimization (CRO) imitates the inter-
action of molecules in a chemical reaction to reach from a higher energy unstable state to a low energy
stable state. A real coded version of it, known as Real-coded chemical reaction optimization (RCCRO).
Oppositional based RCCRO (ORCCRO) have been used here to improve the effectiveness and quality of
solutions in minimum time. The proposed opposition-based RCCRO (ORCCRO) of the present work
employs opposition-based learning for population initialization and also for generation wise update
operation. In the present work, quasi-opposite numbers have been utilized instead of pseudo random
numbers to improve the convergence rate of the RCCRO. Simulation results establish that the proposed
approach outperforms several other existing optimization techniques in terms quality of solution
obtained and computational efficiency. Results also prove the robustness of the proposed methodology
to solve ELD problems.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction on the nature of the cost curves, but suffers from dimensionality
The method Economic Load Dispatch determines the most effi-
cient, reliable and low cost operation of a power system by dis-
patching the power generation resources to supply the load on
the scheme. To minimize the total cost of generation while satisfy-
ing the operational constraints is its main objective. Moreover the
use of highly nonlinear fuel cost characteristics of modern thermal
power plants, the practical Economic Load Dispatch problem con-
tains many local optimum solutions and need to consider a huge
number of complex constraints. Therefore, the classical calculus-
based methods [1] are unable to perform very well in solving
ELD problems, as these techniques need smooth, differentiable
objective function. Though Linear programming method [2] is fast
and reliable it has some drawbacks related with the piecewise lin-
ear cost approximation. Therefore, Dynamic Programming (DP) ap-
proach was proposed by Wood and Wollenberg [3] to solve ELD
problems. Though this technique does not impose any restriction
and larger simulation time.
In recent years, several attempts have been made to solve ELD

with useful and effective techniques, such as genetic algorithm
(GA) [4], evolutionary programming (EP) [5], simulated annealing
(SA) [6], particle swarm optimization (PSO) [7], Ant Colony Optimi-
zation [8], Differential Evolution (DE) [9], Artificial Immune System
(AIS) [10], Bacterial Foraging Algorithm (BFA) [11], Biogeography-
based Optimization (BBO) [12] etc.

The SA method is usually slower than the GA method since the
GA has parallel search capabilities, which imitate natural genetic
operations. However, the limitation of GA of getting attentive in lo-
cal minima and high computational time forced the researchers to
search for more efficient optimization techniques. PSO inspired by
social behaviour of bird flocking population based optimization
and is computationally faster than GA and also required less mem-
ory for its implementation. A closer examination on the operation
of PSO indicates that once inside the optimum region, the algorithm
process get slower due to its inability to adjust the velocity step size
to continue the search at an optimum grain. So for multi-modal
function, particles sometimes fail to reach global optimal point.
DE has been found to yield better and faster solution, satisfying
all the constraints, both for uni-modal and multi-modal system,
using its different crossover strategies. But when system complex-
ity and size increases, DE method is unable to map its entire
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unknown variables together in a better way. In DE all variables are
changed together during the crossover operation. The individual
variable is not tuned separately. So in starting stage, the solutions
moves very fast towards the optimal point but at later stage when
fine tuning operation is required, DE is unsuccessful to give better
performance. Due to increase in number of operations, and larger
size of population, convergence speed of AIS is much slower than
DE or PSO. The optimization methodologies [11,12] have been
developed to solve ED problem, the complexity of the task reveals
the necessity for development of efficient algorithms to accurately
locate the optimum solution. Moreover, exploration ability of BBO
is excellent, but exploitation ability is not very significant. These
methods do not always guarantee global best solutions; rather they
often achieve a near global optimal solution.

Recently, different hybridization and modification of GA, EP,
PSO, DE, BBO like improved GA with multiplier updating (IGA-
MU) [13], directional search genetic algorithm (DSGA) [14], im-
proved fast evolutionary programming (IFEP) [15], new PSO with
local random search (NPSO_LRS) [16], adaptive PSO (APSO) [17],
self-organizing hierarchical PSO (SOH-PSO) [18], improved coordi-
nated aggregation based PSO (ICA-PSO) [19], shuffled DE (SDE)
[20], DE with generator of chaos sequences and sequential
quadratic programming (DEC-SQP) [21], variable scaling hybrid
differential evolution (VSHDE) [22], bacterial foraging with Nel-
der–Mead algorithm (BF-NM) [23], hybrid differential evolution
with biogeography-based optimization (DE/BBO) [24] etc. have
been adopted to solve different types of ELD problems.

Evolutionary algorithms, swarm intelligence and bacterial for-
aging are all population based bio-inspired algorithm. However,
the common disadvantages of these algorithms are complicated
computation, using many parameters. For that reason it is also dif-
ficult to understand these algorithms for beginners.

In recent times, a new optimization technique based on the
concept of chemical reaction, called chemical reaction optimiza-
tion (CRO) has been proposed by Lam and Li [25]. In a chemical
reaction, the molecules of initial reactants stay in high-energy
unstable states and undergo a sequence of collisions either with
walls of the container or with other molecules. The reactants pass
through some energy barriers, reach in low-energy stable states
and become the final products. CRO captures this phenomenon of
driving high-energy molecules to stable, low energy states,
through various types of on-wall or inter-molecular reactions.
CRO has been proved to be a successful optimization algorithm
in discrete optimization.

Basically, the CRO is designed to work in the discrete domain
optimization problems. To make this newly developed technique
suitable for continuous optimization domain, Lam et al. [26] has
developed a real-coded version of CRO, known as real-coded CRO
(RCCRO). RCCRO involves 4 numbers of steps. These are On-Wall
Ineffective Collision, Decomposition, Intermolecular Ineffective
Collision and Synthesis. However, all these steps are not executed
in each iteration simultaneously. First the algorithm will check
randomly whether an elementary reaction which will be per-
formed that is unimolecular or intermolecular. If it is a unimolec-
ular reaction then it will check the decomposition criteria. If
decomposition criteria will be satisfied then decomposition will
be performed otherwise on wall ineffective collision will be per-
formed. Instead of unimolecular reaction if intermolecular reaction
will be selected, the algorithm will check whether synthesis crite-
ria is satisfied or not. If synthesis criteria will be satisfied then syn-
thesis will be performed otherwise intermolecular ineffective
collision will be performed. That means at any single iteration
any one of the 4 steps will be executed either to explore the search
space or to exploit the previously developed best solution to find
much better solution. Therefore, number of steps executed in any
single iteration is comparatively less. To increase the scope of
searching in other regions, the molecule splits into two (or more)
molecules during decomposition. A molecule with too little KE
lacks the ability to transform to a new molecule with higher func-
tion value and gets stuck to a local minimum. When two (or more)
such molecules collide, synthesis takes place and results in a single
molecule with a solution far away from the original solutions. The
resultant molecule can have higher KE due to the combination of
energy from multiple molecules. It allows the exploration of a
new region of the solution space. In whole ‘‘life cycle’’ of a mole-
cule, it searches a region of the solution space for a certain period
and then jumps to another region to continue the search. This pro-
cess can repeat since the excessive energy of some molecules is
recycled through buffer. If the searching time is not restricted,
CRO can explore every possible region of the solution space and
eventually find the global minimum. Moreover, the steps of ele-
mentary reactions are very simple in case of RCCRO.

As RCCRO have both good exploration and exploitation ability,
therefore it can reach to optimal solution within very small num-
ber of iterations. So, total simulation time required by RCCRO to
reach to optimal solution for any test system is quite less. It has
been observed that the performance of RCCRO is quite superior
compared to many previously developed soft computing tech-
niques, when applied to solve continuous benchmark optimization
problems.

Opposition-Based Learning (OBL) was proposed by Tizhoosh in
[27]. OBL was first utilized to improve learning and back propaga-
tion in neural networks by Ventresca and Tizhoosh [28], and since
then, it has been applied to many EAs, such as DE [29], PSO by
Wang et al. [30], and ant colony optimization by Malisia [31].
OBL maps this theory to machine learning and proposes to use
opposite instead of random numbers to evolve the population
quickly. The main principle of OBL is to utilize opposite numbers
to approach the solution. The inventors of OBL claim that a num-
ber’s opposite is probably closer than a random number to a solu-
tion. Thus, by comparing a number to its opposite, a smaller search
space is needed to converge to the right solution. Simon et al. [32]
proved that a quasi-opposite number is usually closer than a
random number to the solution. It has also been proven that a
quasi-opposite number is usually closer than an opposite number
to the solution. The improved computational efficiency of quasi-
opposition based learning concept has motivated the present
authors to incorporate this concept in RCCRO (ORCCRO) to acceler-
ate the convergence speed of RCCRO to a larger extent by compar-
ing the fitness of a solution estimate to its opposite and keeping
the fitter one in the randomly selected population set. This newly
developed algorithm is applied to solve different non-convex
complex ELD problems in search for superior quality solutions in
a computationally efficient way.

Section 2 of the paper provides a brief description and mathe-
matical formulation of different types of ELD problems. Section 3
describes the proposed RCCRO algorithm shortly. Section 4 designs
the oppositional based learning technique and a short description
of the ORCCRO algorithm and it used in ELD problems. Simulation
studies are presented and discussed in Section 5. The conclusion is
drawn in Section 6.
2. Mathematical modeling of the ELD problem

Four different types of ELD problems have been formulated and
solved by ORCCRO approach. These are:

2.1. ELD with valve-point effects and transmission loss

The overall objective function FT of ELD problem considering
valve-point effect [33] may be written as
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FT ¼
XN

i¼1

FiðPiÞ
 !

¼
XN

i¼1

aiþbiPiþciPi2þ j ei�sinffi�ðPimin�PiÞg j
 !

ð1Þ

where, Fi(Pi), is cost function of the ith generator, and is usually
expressed as a quadratic polynomial; ai, bi and ci are the cost coef-
ficients of the ith generator, ei and fi are the coefficients of the ith
generator reflecting the valve-point effects; N is the number of com-
mitted generators; Pi is the power output of the ith generator. The
ELD problem consists in minimizing FT subject to following
constraints:

2.1.1. Real power balance constraint

XN

i¼1

Pi � ðPD þ PLÞ ¼ 0 ð2Þ

where, PL is the total transmission loss; PD is the total system active
power demand. Calculation of PL using the B-matrix loss coefficients
is expressed as:

PL ¼
XN

i¼1

XN

j¼1

PiBijPj þ
XN

i¼1

B0iPi þ B00 ð3Þ
2.1.2. The generating capacity constraint
The power generated by each generator shall be within their

lower limit Pimin and upper limit Pimax. So that

Pmin
i 6 Pi 6 Pmax

i ð4Þ

where Pmin
i and Pmax

i are the minimum and the maximum power
outputs of the ith unit.

2.2. ELD with valve-point effects and transmission loss

The objective function of this type of ELD problem is same as
mentioned in (1). The objective function FT is to be minimized sub-
ject to the constraints of (2), (4). Transmission loss is considered
here and PL can be find out using the B-matrix loss coefficients
which is expressed in (3).

2.3. ELD with quadratic cost function

The overall objective function FT of ELD problem in this case,
may be written as

FT ¼ min
XN

i¼1

FiðPiÞ ¼ min
XN

i¼1

ðai þ biPi þ ciP
2
i Þ ð5Þ

where, Fi(Pi), is cost function of the ith generator, and is usually ex-
pressed as a quadratic polynomial; ai, bi and ci are the cost coeffi-
cients of the ith generator; N is the number of committed
generators; Pi is the power output of the ith generator. The objective
function FT is to be minimized subject to the constraints of (2), (4).
Transmission loss is not considered.

2.4. ELD with non-smooth cost functions with multiple fuels and
valve-point effects

For a power system with N generators and nF fuel options for
each unit, the cost function of the generator with valve-point load-
ing is expressed as:

FipðPiÞ ¼ aip þ bipPi þ cipP2
i þ jeip � Sinffip � ðPmin

ip � PiÞgj

if Pmin
ip 6 Pi 6 Pmax

ip for fuel option p; p ¼ 1;2; . . . ; nF ð6Þ
where, Pipmin and Pipmax are the minimum and maximum power
generation limits of ith generator with fuel option p, respectively;
aip, bip, cip, eip and fip are the fuel-cost coefficients of ith generator
for fuel option p. Considering N numbers of generators, the objec-
tive function is to be minimized subject to the constraints of (2),
(4), without transmission loss.

2.5. Calculation for slack generator

Let N committed generating units deliver their power output
subject to the power balance constraint (2) and the respective
capacity constraints of (4). Assuming the power loadings of first
(N � 1) generators are known, the power level of Nth generator
(Slack Generator) is given by

2.5.1. Without transmission loss

PN ¼ PD �
XðN�1Þ

i¼1

Pi ð7Þ
2.5.2. With transmission loss

PN ¼ PD þ PL �
XðN�1Þ

i¼1

Pi ð8Þ

Using Eqs. (3) and (8), the modified form of equation is:

BNNP2
N þ PN 2

XN�1

i¼1

BNiPi þ
XN�1

i¼1

B0N � 1

 !

þ PD þ
XN�1

i¼1

XN�1

j¼1

PIBijPJ þ
XN�1

i¼1

B0iPi �
XN�1

i¼1

Pi þ B00

 !
¼ 0 ð9Þ

The solution procedure of (9) to calculate Nth generator output, PN

is same as mentioned in [24].
3. Real-Coded Chemical Reaction Algorithm

This section presents an interesting new optimization algorithm
called chemical reaction optimization (CRO) which has been re-
cently proposed in [25,26].

CRO loosely imitates what happens to molecules in a chemical
reaction system. Every chemical reaction tends to release energy;
therefore, products generally have less energy than the reactants.
In terms of stability, the lower the energy of the substance, the
more stable it is. In a chemical reaction, the initial reactants in
the high-energy unstable states undergo a sequence of collisions,
pass through some energy barriers, and become the final products
in low-energy stable states. It is not difficult to discover the corre-
spondence between optimization and chemical reaction. Both of
them aim to seek the global optimum with respect to different
objectives and the process evolves in a stepwise fashion. With this,
the chemical-reaction-inspired meta-heuristic, called chemical
reaction optimization (CRO) [25] has been developed by Lam
et al. in 2010.

CRO has been already proved to be a successful optimization
algorithm with different applications [25], most of which are dis-
crete optimization problems. In order to make this optimization
technique suitable for both continuous and discrete optimization
problems, Lam et al. presented a modified version of CRO in
2012, which is termed as real-coded chemical reaction optimiza-
tion (RCCRO) [26].
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3.1. Major components of RCCRO

3.1.1. Molecules
The manipulated agents involved in a reaction are known as

molecules. Three main properties of each molecule are: (1) the
molecular structure X; (2) current potential energy (PE); (3) cur-
rent kinetic energy (KE); and some optional attributes which can
be used to construct other versions of CRO for particular problems.
The meanings of the attributes in the profile are already provided
in [26].

3.2. Elementary reactions

In CRO, numerous collisions occur. These collisions occur either
between the molecules or between the molecules and the walls of
the container. Depending upon the type of collisions, distinct
elementary reactions occur. There are four types of elementary
reactions. These are: (1) on-wall ineffective collision; (2) decompo-
sition; (3) intermolecular ineffective collision; and (4) synthesis. In
the term of optimization, different elementary reactions explore
the solution space in search for better solutions. Different types
of elementary reactions are briefly described below:

3.2.1. On wall ineffective collision
When a molecule hits a wall and bounces back, a small change

occurs to its molecular structure and PE. As the collision is not so
vigorous, the resultant molecular structure is not too different
from the original one. If X and X0 represents the molecular structure
before and after the on-wall collision respectively, then on-wall
ineffective collision tries to transform X to X0, in the close neigh-
bourhood of X, that is

X0 ¼ X þ D ð10Þ

where, D is a perturbation for the molecule. There are many
probability distributions which can be used to produce probabilistic
perturbations. In this paper, Gaussian distribution based mutation
operation has been utilized, to transform X to X0, in the close neigh-
bourhood of X. By the change of molecular structure, PE and KE also
change from PEX to PEX0 and KEX to KEX0 .

This change will happen only if Eq. (11) is satisfied.

PEX þ KEX P PEX0 ð11Þ

If Eq. (11) does not hold, the change is not allowed and the molecule
retains its original X, PE and KE. Due to interaction with a wall of the
container, a certain portion of molecules’ KE will be extracted and
stored in the central energy buffer (buffer) when the transformation
is complete. The stored energy can be used to support decomposi-
tion. The size of KE loss depends on a random number a1 2 [KELoss-
Rate, 1], where KELossRate is a parameter of CRO. Updated KE and
buffer is represented as

KEX0 ¼ ðPEX � PEX0 þ KEXÞ � a1 ð12Þ

buffer ¼ buffer þ ðPEX þ KEX � PEX0 Þ � ð1� a1Þ ð13Þ
3.2.2. Decomposition
In decomposition, one molecule hits the wall and breaks into

two or more molecule e.g., X01 and X02. Due to change of molecular
structure, their PE and KE also changes from PEX to PEX01

and PEX02
,

and KEX to KEX01
and PEX02

. This change is allowed, if the original
molecule has sufficient energy (PE and KE) to endow the PE of
the resultant ones, that is

PEX þ KEX P PEX01
þ PEX02

ð14Þ

Let temp1 ¼ PEX þ KEX � PEX01
� PEX02
Then,

KEX01
¼ k� temp1 and KEX02

¼ ð1� kÞ � temp1 ð15Þ

where, k is a random number uniformly generated from the interval
[0,1]. Eq. (14) holds only when KEX is large enough. Due to the con-
servation of energy, X sometimes may not have enough energy
(both PE and KE) to sustain its transformation into X01 and X02. To
encourage decomposition, a certain portion of energy, stored in
the central buffer (buffer) can be utilized to support the change. In
that case modified condition is

PEX þ KEX þ buffer P PEX01
þ PEX02

ð16Þ

The new values of KE for resultant molecules and buffer are

KEX01
¼ ðtemp1þ bufferÞ �m1�m2 ð17Þ

KEX02
¼ ðtemp1þ bufferÞ �m3�m4 ð18Þ

buffer ¼ buffer þ temp1� KEX01
� KEX02

ð19Þ

where, values of m1, m2, m3 and m4 are random Nos. generated in
between [0, 1]. To generate X 01 and X02, any mechanism which cre-
ates X01 and X02 quite different from X, is acceptable. However, in this
paper, to generate X01 and X02, the same procedure mentioned in sec-
tion IIIB of [26] is followed.

3.2.3. Intermolecular ineffective collision
An intermolecular ineffective collision describes the situation

when two molecules collide with each other and then bounce
away. The effect of energy change of the molecules is similar to
that in an on-wall ineffective collision, but unlike on-wall ineffec-
tive collision this elementary reaction involves more than one mol-
ecule and no KE is drawn to the central energy buffer. Similar to the
on-wall ineffective collision, this collision is not vigorous;
therefore the new molecular structures are generated in the
neighbourhood of previous molecular structures. In this paper,
new molecular structures are created using the same concept men-
tioned in on-wall ineffective collision. Suppose, the original molec-
ular structures are X1 and X2 are transformed after collision and
two new molecular structures are X01 and X02 respectively. The
two PE are changed from PEX1 and PEX2 to PEX01

and PEX02
. The two

KE are changed from KEX1 and KEX2 to KEX01
and KEX02

The changes to the molecules are acceptable only if

PEX1 þ PEX2 þ KEX1 þ KEX2 P PEX01
þ PEX02

ð20Þ

The new values of KE are calculated as

KEX01
¼ ðPEX1 þ PEX2 þ KEX1 þ KEX2 � PEX01

� PEX02
Þ � aaa1 ð21Þ

KEX02
¼ ðPEX1 þ PEX2 þ KEX1 þ KEX2 � PEX01

� PEX02
Þ � ð1� aaa1Þ

ð22Þ

where, aaa1 is a random number uniformly generated in the inter-
val [0, 1]. If the condition of Eq. (20) fails, the molecules maintain
the original X1, X2, PEX1 , PEX2 , KEX1 and KEX2 .

3.2.4. Synthesis
Synthesis is a process when two or more molecules (in present

paper two molecules X1andX2)collide to each other and combine to
form a single molecule X0. The change is vigorous and the resultant
molecular structure X0 is greatly different from X1 and X2 As in
decomposition, any mechanism which combines two molecules
to form a single molecule may be used. In this paper, procedure
mentioned in section IIIB of [26] is used to create X0. The two PE
are changed from PEX1 and PEX2 to PEX0 . The two KE are change from
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KEX1 and KEX2 to PEX0 . The modification is acceptable if following
condition holds

PEX1 þ PEX2 þ KEX1 þ KEX2 P PEX0 ð23Þ

The new value of KE of the resultant molecule is

KEX0 ¼ PEX1 þ PEX2 þ KEX1 þ KEX2 � PEX0 ð24Þ

If condition of Eq. (23) is not satisfied, X1, X2and their related PE and
KE are preserved, instead of X 0, PEX0 and KEX0 . The pseudo codes for
all above-mentioned elementary reaction steps are available in [25].

4. Opposition based learning

Opposition-based learning (OBL) is developed by Tizhoosh [27]
to improve computational efficiency and to accelerate the conver-
gence rate of different optimization techniques. OBL has been pro-
posed to improve candidate solution by considering current
population as well as its opposite population at the same time.
Many researchers successfully applied this learning process into
different soft computing techniques [34–36].

Here, opposite and quasi-opposite numbers are defined in one-
dimensional space. These definitions can easily be extended to
higher dimensions.

If x be any real number between [qa, qb], its opposite number x0,
is defined as

x0 ¼ qaþ qb� x ð25Þ

If x be any real number between [qa,qb], Its quasi-opposite point, xqo

is defined as

xqo ¼ randðqc; xoÞ ð26Þ

where, qc is the centre of the interval [qa, qb] and can be calculated
as (qa + qb)/2 and rand(qc, xo) is a random number uniformly dis-
tributed between qc and x0. The same logic can be applied to reflect
the quasi-opposite point xqo, and therefore to obtain its quasi-re-
flected point xqr. If x be any real number between [qa, qb]. Then
the quasi-reflected point, xqr is defined as

xqr ¼ randðqc; xÞ ð27Þ

where, rand(qc, x) is a random number uniformly distributed be-
tween qc and x.

4.1. Sequential steps of ORCCRO algorithm

The stepwise ORCCRO are mentioned below:

(1) In initialization stage, configure the initial settings for the
molecules and the parameters (i.e., PopSize, KELossRate, Mol-
eColl, buffer, InitialKE, a, and b). Specify the No. of unknown
variables (n), lower and upper bounds of unknown variables
of the given problem.

(2) Create each molecule set, after generating all the unknown
variables of the problem randomly within their effective
lower and upper bounds, satisfying different constraints.
Each molecule set represents a potential solution of the
problem. Generate several molecule set to create Molecular
matrix, size of which is (PopSize � n). In a same way, create
quasi-opposite molecular matrix (QOM) using Eq. (26) after
satisfying all the feasible constraints of their upper and
lower limit bounds.

(3) Calculate each PEs for molecule set and Quasi-opposite
molecular set.

(4) Set a new PopSize size of PEs by comparing each PEs for
molecule set and Quasi-opposite molecular set. Set their
KE values as InitialKE from the initialization in step 2.
(5) During iterative process, first check the type of reaction to be
held because one molecular collision held in an iteration.
Create a random number b 2 [0, 1]. If b is greater than Mol-
eColl or there is only one molecule left, the next reaction is a
uni-molecular reaction; else it is an intermolecular reaction.

(6) For each uni-molecular reaction, choose one molecule ran-
domly and check whether it satisfies the decomposition cri-
terion: (number of hits � minimum hit number) > a. where,
a is the tolerance of duration for the molecule without
obtaining any new local minimum solution. If so, perform
decomposition steps; else perform on-wall ineffective
collision steps. For decomposition if Eq. (14) or Eq. (16) is
satisfied, modify KE and buffer using Eq. (15) or Eqs. (17)–
(19)respectively. Similarly for on wall ineffective collision
if Eq. (11) is satisfied then modify KE and buffer using Eqs.
(14) and (13) respectively. For both the cases, modify the
PE of each molecule set using their objective function value.

(7) For each intermolecular reaction, select two (or more) mol-
ecule sets randomly from the molecular matrix and test
the synthesis criterion: (KE 6 b). Where, b is the minimum
KE a molecule should have. If the condition is satisfied, per-
form the synthesis; otherwise, perform different steps of an
intermolecular ineffective collision. For synthesis if Eq. (23)
is satisfied, modify KE using Eq. (24). For intermolecular col-
lision, if Eq. (20) is satisfied, modify KE using Eq. (21) and
(24).

(8) Select a new parameter ‘jumping rate’(Jr) within [0, 1]. Form
quasi-opposite molecule set (QOM) from the newly
developed molecular set generated in previous steps as per
following procedure:

if rand < Jr

for i = 1: PopSize
for j = 1:n

QOM(i, j) = rand(qc(j), xo);
end

end
end

Newly created quasi-opposite molecule set (QOM) must satisfy the
feasible constraints of their lower and upper bounds.

(1) Calculate each PEs for molecule set and Quasi-opposite
molecular set.

(2) Set a new PopSize size of PEs by comparing each PEs for mol-
ecule set and Quasi-opposite molecular set.

(3) If the maximum No. of iterations is reached or specified
accuracy level is achieved, terminate the iterative process,
otherwise go to step 5 for continuation.

4.2. ORCCRO algorithm for Economic Load Dispatch problem

In this subsection, the procedure to implement the ORCCRO
algorithm for solving the ELD problems has been described. The
flow chart of ORCCRO for solving ELD problem is shown in Fig. 1.
The detail sequential steps of the ORCCRO algorithm applied to
solve ELD problem are presented below:

(1) Representation of the Molecular Structure X and Quasi-opposite
Molecular Structure OX: Since the assessment variables for
ELD problem are real power output of the generators, they
are used to represent the individual molecular structure.



Fig. 1. Flow chart of ORCCRO applied in ELD problems.
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Each individual element of the molecular structure repre-
sents the real power output of each generator. For initializa-
tions choose the number of generator units m and the total
number of molecular structure, PopSize.

The complete molecular structure is represented in the form of
the following matrix:
X ¼ Xi ¼ ½X1;X2;X3; . . . XPopSize� where i ¼ 1;2; . . . ; PopSize

In case of ELD problem, each molecular set is presented as:

½Xi;j� ¼ ½Xi;1;Xi;2; . . . ;Xi;m� ¼ ½Pgi;j� ¼ ½Pgi;1; Pgi;2; . . . ; Pgi;m�;

where i = 1,2, . . . ,PopSize; j = 1,2, . . . ,m. Each molecule set is one of
the possible solutions for the ELD problem. The element Xij of Xi is
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the jth position component of molecule set i. Each element of a gi-
ven molecule set Xi is initialized randomly within the effective real
power operating limits, based on Eq. (4) except last one i.e. mth ele-
ment. The last element of each molecule set Xi is calculated solving
Eq. (7) or Eq. (9). In a similar fashion, form Quasi-opposite molecu-
lar set using Eq. (26) while satisfying different constraints of Eq. (2)
and Eq. (4).

(2) Initialization of the Molecule set: Each individual element of
the Molecular structure matrix and Quasi-opposite molecu-
lar set, i.e. each element of a given molecule set X is initial-
ized randomly within the effective real power operating
limits, based on Eq. (4) except last one. The last element
of each molecule set X is calculated solving Eq. (7) or Eq.
(9). In a similar way each element of a given Quasi-opposite
molecular set OX is initialized using Eq. (26) within the
effective real power operating limits, based on Eq. (2) and
(4).

(3) Evaluation of PE: In case of ELD problems, potential energy
PE, of each molecule set is represented by the total fuel cost
of generation for all the generators of that given molecule
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set. It is calculated using Eq. (5) for the system having qua-
dratic fuel cost characteristic; using Eq. (1) for the system
having valve-point effect; using Eq. (6) for the system hav-
ing multi-fuel type fuel cost characteristic.

Steps of algorithm to solve ELD problems are given below.

Step (1) For initialization, choose No. of generator units, m:
number of molecular structure set, PopSize; elitism parameter
‘‘p’’. Specify maximum and minimum capacity of each genera-
tor, qb and qa are assign to be the maximum and minimum
capacity of each generator, Jr, power demand, B-coefficients
matrix for calculation of transmission loss. Also initialize the
RCCRO parameters like KELossRate, MoleColl, buffer, InitialKE, a,
and b etc. Set maximum number of iterations, Itermax.
Step (2) Initialize each element of a given molecule set of X
matrix and Quasi-opposite molecular set OX using the concept
mentioned in ‘‘Initialization of the Molecule set’’.
Step (3) Calculate the PE value for each molecule set of the
molecular matrix and Quasi-opposite molecular matrix for
given initial Kinetic Energy (KE) i.e. InitialKE.
Step (4) Based on their PES values, sort out best PopSize sets of
solution from the PopSize sets of molecule and PopSize sets of
quasi-opposite molecular. Then create the new molecular
matrix X.
Step (5) Create a random number b 2 [0, 1]. If b is greater than
MoleColl or there is only one molecule left (at the later stage of
iterative procedure, this condition may hold), perform a unimo-
lecular reaction, else perform an intermolecular reaction.
Step (6) If unimolecular reaction is selected, choose one mole-
cule set randomly from the whole X matrix and check whether
it satisfies the decomposition criterion.

If decomposition condition is satisfied, perform decomposition
on that particular molecule set. Create two new molecule sets
using the steps mentioned in section IIIB of [26]. Calculate PE of
the new molecule sets. If the condition mentioned Eq. (14) or Eq.
(16) is satisfied, modify KE of new molecule sets using Eq. (15) or
Eq. (17) and (18). Modify buffer using Eq. (19).

If decomposition condition is not satisfied, perform on wall
ineffective collision. Create two new molecule sets using the proce-
dure mentioned in sub-Section 3.2.1. Calculate PE of the modified
molecule set. If the condition mentioned in Eq. (11) is satisfied then
modify KE of new molecule set using Eq. (12). Modify buffer using
Eq. (13).

Step (7) From the condition of step 5, if intermolecular reaction
is chosen, select two (or more) molecule sets randomly from the
molecular matrix X and test the synthesis criterion (KE 6 b).

If the condition is satisfied, perform the synthesis steps. Create a
new molecule set from the two selected molecule sets following
the procedure given in section IIIB of [26]. Calculate PE of the
new molecule set. After new molecule creation, if the condition
of Eq. (23) is satisfied, modify KE of new molecule set using Eq.
(24).

If synthesis condition (KE 6 b) is not satisfied, perform intermo-
lecular collision. Create two new molecule sets in the neighbour-
hood of selected molecule sets following the procedure mentioned
in sub-Section 3.2.1. Calculate PE of the new molecule set. After
new molecule sets creation, if condition presented in Eq. (20) is sat-
isfied, modify KE of new molecule sets using Eq. (21) and (24).

Step (8) Verify the feasibility of each newly generated molecule
set of the modified X matrix, obtained after intermolecular or
unimolecular reaction. Individual element of each modified
molecule set must satisfy the generator operating limit con-
straint of Eq. (4). If some elements of a molecule set violate
either upper or lower operating limits, then fix the values of
those elements of the molecule set at the limit hit by them. Sat-
isfy Real Power Balance constraint of Eq. (2) (in case of lossless
system take PL = 0 in (2)) using the concept of slack generator as
presented in Section 2.5. If output of slack generator does not
meet generator operating limit constraint Eq. (4) discard that
new molecule set, and reapply above-mentioned step-5 to
step-7 on its old value (before any molecular reaction was per-
formed), until all the constraints are satisfied.
Step (9) Quasi-opposite molecule set (QOM) can be formed
from the newly developed molecular set generated in previous
steps as per following procedure:
if rand < Jr

for i = 1: PopSize
for j = 1: m

QOM(i, j) = rand(qc(j), xo);
end

end
end

Newly created quasi-opposite molecule set (QOM) must satisfy the
feasible constraints of Eq. (2) and (4). If some elements of a quasi-
opposite molecule set violate either upper or lower operating limits,
then fix the values of those elements of the quasi-opposite molecule
set at the limit hit by them. Satisfy Real Power Balance constraint of
Eq. (2) (in case of lossless system take PL = 0 in Eq. (2)) using the
concept of slack generator as presented in Section 2.5. If output of
slack generator does not meet generator operating limit constraint
Eq. (4) discard that new quasi-opposite molecule set, and reapply
above-mentioned step-9 on its old value until all the constraints
are satisfied.

Step (10) Recalculate the PE of each newly generated molecule
set i.e. the fuel cost for each power output set of each newly
generated molecule set and Quasi-opposite molecular set.
Step (11) Based on their PE values, sort out best PopSize sets of
solution from the PopSize sets of molecular set and PopSize sets
of quasi-opposite molecular set. Then create the new molecular
matrix X.
Step (12) Based on the PE values identify the best molecule set.
Here, best term is used to indicate that molecule set of genera-
tor power outputs, which give minimum fuel cost. If the best
value of present iteration is superior to the best result up to last
iteration, then best value of present iteration will be treated as
global best solution and that will be stored in a different mem-
ory location for comparison in next iteration. Otherwise best
result up to last iteration will be treated as global best solution



Table 1
Best power output for 13-generators system (PD = 2520 MW).

Unit Power outputs (MW) Unit Power outputs (MW) Unit Power outputs (MW)

ORCCRO SDE [20] ORCCRO SDE[20] ORCCRO SDE[20]

1 628.32 628.32 6 159.73 159.73 11 112.14 113.12
2 299.20 299.20 7 159.73 159.73 12 92.40 92.40
3 299.20 299.20 8 159.73 159.73 13 92.40 92.40
4 159.73 159.73 9 159.73 159.73 Total power (MW) 2559.43 2560.43
5 159.73 159.73 10 77.40 77.40 Transmission loss (MW) 39.43 40.43

Fuel cost ($/h) 24513.91 24514.88
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Fig. 2. Convergence characteristic of 13-generators system obtained by ORCCRO, BBO and DE/BBO.

Table 2
Comparison between different methods taken after 50 trials (13-generators system).

Methods Generation Cost ($/h) Time/Iteration (S) No. of hits to minimum solution

Max. Min. Average

ORCCRO 24513.91 24513.91 24513.91 0.04 50
SDE[20] NA 24514.88 24516.31 NA NA
ICA-PSO[19] 24589.45 24540.06 24561.46 0.052 NA*

STHDE[20] NA 24560.08 NA NA NA
BBO 24516.09 24515.21 24515.32 0.15 44
DE/BBO 24515.98 24514.97 24515.05 0.11 46

* NA:- Data Not Available
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and that will be stored in that memory location for comparison
in next iteration.
Step (13) Go to step 5 for the next iteration. Terminate the pro-
cess after a predefined number of iterations, Itermax.

5. Examples and simulation results

Proposed ORCCRO algorithm has been applied to solve ELD
problems in four different test cases and its performance has been
compared to several other optimization techniques like DE [20],
BBO, DE/BBO, and PSO [7,19] etc. for verifying its feasibility.

5.1. Description of the test system

5.1.1. Test system 1
In this example, 13 generating units with valve-point effect has

been considered. Transmission loss has been included in the prob-
lem. Power demand is 2520 MW and system data have been taken
from [21]. Results obtained from proposed ORCCRO, SDE [20] and
different versions of PSO [19], BBO, DE/BBO method have been pre-
sented here. Their best solutions are presented in Table 1. The con-
vergence characteristic of the 13-generator systems in case of
ORCCRO, BBO, DE/BBO is shown in Fig. 2. Minimum, average and
maximum fuel costs obtained by ORCCRO and modified versions
of PSO [19], SDE [20], BBO, DE/BBO over 50 trials are presented
in Table 2.

5.1.2. Test system 2
A system with 40 generators with valve-point effect has been

considered. The input data are available in [15]. The load demand
is 10500 MW. Transmission loss has been considered here. The
B-loss coefficients for the transmission losses of this system have
been taken from the B-loss coefficients of the 6-generator test sys-
tem [37], by multiplication on rows and columns up to 40 units.
The result obtained using proposed ORCCRO method has been
compared with BBO, DE/BBO, SDE [20] and GAAPI [20]. Their best
solutions are shown in Table 3. Convergence characteristic of the
40-generators system in case of ORCCRO, BBO, DE/BBO is shown
in Fig. 3. Minimum, average and maximum fuel costs obtained by
RCCRO, BBO, DE/BBO over 50 trials are presented in Table 4.

5.1.3. Test system 3
A 110 generators system having quadratic fuel cost characteris-

tic is used here. The input data of the whole system are taken from



Table 3
Best power output for 40-generators system with transmission loss (PD = 10500 MW).

Unit Power outputs (MW)

ORCCRO SDE[20] GAAPI [20] BBO DE/BBO

P1 111.68 110.06 114 112.54 111.04
P2 112.16 112.41 114 113.22 113.71
P3 119.98 120.00 120.00 119.51 118.64
P4 182.18 188.72 190 188.37 189.49
P5 87.28 85.91 97 90.41 86.32
P6 139.85 140.00 140.00 139.05 139.88
P7 298.15 250.19 300 294.97 299.86
P8 286.89 290.68 300 299.18 285.42
P9 293.38 300 300 296.46 296.29
P10 279.34 282.01 205.25 279.89 285.07
P11 162.35 180.82 226.3 160.15 164.69
P12 94.12 168.74 204.72 96.74 94.00
P13 486.44 469.96 346.48 484.04 486.30
P14 487.02 484.17 434.32 483.32 480.70
P15 483.39 487.73 431.34 483.77 480.66
P16 484.51 482.30 440.22 483.30 485.05
P17 494.22 499.64 500 490.83 487.94
P18 489.48 411.32 500 492.19 491.09
P19 512.20 510.47 550 511.28 511.79
P20 513.13 542.04 550 521.55 544.89
P21 543.85 544.81 550 526.42 528.92
P22 548.00 550.00 550 538.30 540.58
P23 521.21 550.00 550 534.74 524.98
P24 525.01 528.16 550 521.20 524.12
P25 529.84 524.16 550 526.14 534.49
P26 540.04 539.10 550 544.43 529.15
P27 12.59 10.00 11.44 11.51 10.51
P28 10.06 10.37 11.56 10.21 10.00
P29 10.79 10.00 11.42 10.71 10.00
P30 89.70 96.10 97 88.28 90.06
P31 189.59 185.33 190 189.84 189.82
P32 189.96 189.54 190 189.94 187.69
P33 187.61 189.96 190 189.13 189.97
P34 198.91 199.90 200 198.07 199.83
P35 199.98 196.25 200 199.92 199.93
P36 165.68 185.85 200 194.35 163.03
P37 109.98 109.72 110 109.43 109.85
P38 109.82 110.00 110 109.56 109.26
P39 109.88 95.71 110 109.62 109.60
P40 548.50 532.47 550 527.82 543.23
Total Power(MW) 11458.75 11474.43 11545.06 11470 11457.83
Loss(MW) 958.75 974.43 1045.06 970.37 957.83
Fuel Cost($/h) 136855.19 138157.46 139864.96 137026.82 136950.77
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Fig. 3. Convergence characteristic of 40-generators system obtained by ORCCRO, BBO and DE/BBO.
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[38]. The load demand is 15000 MW. The best results obtained by
proposed ORCCRO is shown in Table 5. Out of 50 trials, minimum,
maximum and average fuel cost obtained using ORCCRO, SAB [39],
SAF [39], SA [39], BBO, DE/BBO are shown in Table 6. Convergence
characteristic obtained using ORCCRO, BBO, DE/BBO is presented in
Fig. 4.



Table 4
Comparison maximum, minimum and average value taken after 50 trials (40-generators system).

Methods Generation Cost ($/h) Time/iteration (S) No. of hits to Min. solution

Max. Min. Average

ORCCRO 136855.19 136855.19 136855.19 0.07 50
BBO 137587.82 137026.82 137116.58 0.20 41
DE/BBO 137150.77 136950.77 136966.77 0.16 45

Table 5
Best power output for 110-generators system (pd = 15000mw).

Unit Power output (MW) Unit Power output (MW) Unit Power output (MW) Unit Power output (MW) Unit Power output (MW)

P1 2.40 P25 400.00 P49 8.40 P73 96.85 P97 3.63
P2 2.42 P26 400.00 P50 8.40 P74 201.25 P98 3.67
P3 2.42 P27 500.00 P51 8.64 P75 89.99 P99 4.41
P4 2.44 P28 500.00 P52 12.06 P76 49.99 P100 4.41
P5 2.44 P29 200.00 P53 12.00 P77 161.01 P101 10.00
P6 4.01 P30 99.54 P54 12.00 P78 284.23 P102 10.05
P7 4.02 P31 10.00 P55 12.00 P79 183.91 P103 20.11
P8 4.01 P32 19.99 P56 25.24 P80 107.53 P104 20.00
P9 4.00 P33 79.72 P57 25.93 P81 10.07 P105 40.01
P10 66.59 P34 249.79 P58 35.07 P82 12.05 P106 40.01
P11 59.25 P35 359.98 P59 35.08 P83 21.95 P107 50.01
P12 30.23 P36 400.00 P60 45.11 P84 199.22 P108 30.03
P13 52.47 P37 39.41 P61 45.10 P85 324.52 P109 40.06
P14 25.00 P38 69.73 P62 45.18 P86 439.98 P110 20.02
P15 25.14 P39 99.99 P63 184.96 P87 32.33 Fuel Cost ($/h): �198016.29
P16 25.02 P40 119.70 P64 184.22 P88 22.30
P17 154.91 P41 157.90 P65 184.64 P89 86.67
P18 154.99 P42 219.57 P66 185.00 P90 92.52
P19 154.52 P43 439.98 P67 70.01 P91 59.67
P20 154.82 P44 559.96 P68 70.01 P92 98.59
P21 68.93 P45 660.00 P69 70.01 P93 439.98
P22 68.98 P46 604.13 P70 359.99 P94 499.99
P23 69.00 P47 5.44 P71 399.96 P95 599.95
P24 349.872545 P48 5.40 P72 399.87 P96 462.47

Table 6
Comparison between different methods taken after 50 trials (110-generators system).

Methods Generation cost ($/h) Time/iteration (S) No. of hits to Min. Solution

Max Min Average

ORCCRO 198016.89 198016.29 198016.32 0.15 48
SAB[39] NA 206912.9057 207764.73 NA NA
SAF[39] NA 207380.5164 207813.37 NA NA
SA[39] NA 198352.6413 201595.19 NA NA
BBO 199102.59 198241.166 198413.45 0.52 41
DE/BBO 198828.57 198231.06 198326.66 0.46 43
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5.1.4. Test system 4
A complex system with 160 thermal units with multiple fuel

option and valve-point effect is considered here. The input data
are available in [13] for 10 units system. For 160 thermal units in-
put data are taken multiplication of each set of values of 10 units
system up to 160 units. The system demand is 43200 MW. Trans-
mission loss has not been included. The best result obtained using
the proposed ORCCRO algorithm is shown in Table 7. Minimum,
average and maximum fuel costs obtained by ORCCRO, ED-DE
[40], and different GA [40] methods, BBO, DE/BBO over 50 trials
are presented in Table 8. Convergence characteristic of the 160-
generator systems obtained by ORCCRO, BBO, DE/BBO is shown
in Fig. 5.

5.2. Tuning of parameters for ORCCRO algorithms

To get optimum solution using ORCCRO algorithm, it is neces-
sary to get proper values of different parameter like, kinetic energy
loss rate (KELossRate), initial kinetic energy (InitialKE) and b. Tuning
of other ORCCRO parameters like MoleColl, a are also very impor-
tant. For different values of these parameters, minimum fuel costs
of generation are evaluated for 160 generators system. For a single
value of one parameter, other parameters have been varied for
their all possible combinations. Like the parameters of RCCRO
jumping rate in OBL is also necessary to tuned to get better effi-
ciency. As for example, when InitialKE = 2000; that time b has been
varied from 100 to 1000 in suitable steps. At the same time for each
value of b, a has been varied from 100 to 2000 in suitable steps.
Similarly for each value of a, MoleColl, jumping rate(Jr) and KELoss-
Rate have been varied from 0.1 to 0.9.

However, to present all these results in a table, takes lots of
space. Therefore, the detail tuning procedure is not presented here.
A brief summarized result is only shown in Table 9.

Too large or small value of molecular structure size may not be
capable to get the minimum value of fuel cost. For each molecular
structure size (PopSize) of 20, 50, 100, 150 and 200, 50 trials have
been run. Out of these, molecular structure size of, 50 achieves best
fuel cost of generation for this system. For other molecular
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Fig. 4. Convergence characteristic of 110-generators system, obtained by ORCCRO, BBO and DE/BBO.

Table 7
Best power output For 160-generators system (Pd = 43200 mw).

Unit Power output
(MW)

Unit Power output
(MW)

Unit Power output
(MW)

Unit Power output
(MW)

Unit Power output
(MW)

Unit Power output
(MW)

P1 213.38 P28 240.09 P55 281.85 P82 210.35 P109 418.50 P136 235.67
P2 213.62 P29 407.28 P56 235.04 P83 294.06 P110 263.68 P137 301.49
P3 278.42 P30 255.35 P57 280.11 P84 242.61 P111 214.95 P138 236.29
P4 238.25 P31 220.97 P58 238.20 P85 286.39 P112 215.10 P139 429.15
P5 285.43 P32 206.99 P59 436.27 P86 238.89 P113 271.56 P140 266.64
P6 237.47 P33 285.68 P60 292.89 P87 283.02 P114 235.99 P141 212.69
P7 309.78 P34 238.10 P61 221.02 P88 244.65 P115 268.60 P142 201.24
P8 240.27 P35 289.87 P62 209.27 P89 427.17 P116 235.06 P143 277.65
P9 439.97 P36 241.42 P63 269.63 P90 287.12 P117 277.26 P144 237.23
P10 278.96 P37 293.11 P64 237.11 P91 216.22 P118 240.10 P145 291.73
P11 222.15 P38 241.34 P65 287.60 P92 217.68 P119 439.84 P146 237.83
P12 207.50 P39 420.91 P66 237.54 P93 284.48 P120 282.39 P147 282.03
P13 274.71 P40 277.08 P67 271.21 P94 240.78 P121 217.82 P148 238.07
P14 237.41 P41 222. 50 P68 242.82 P95 274.68 P122 203.02 P149 431.23
P15 283.18 P42 211.20 P69 433.10 P96 234.35 P123 273.98 P150 272.55
P16 248.50 P43 286.51 P70 284.49 P97 294.49 P124 236.98 P151 218.92
P17 296.18 P44 238.77 P71 227.81 P98 240.97 P125 276.88 P152 214.83
P18 245.17 P45 273.00 P72 213.96 P99 420.14 P126 239.41 P153 270.33
P19 437.55 P46 245.42 P73 284.05 P100 259.16 P127 291.85 P154 238.47
P20 283.07 P47 285.78 P74 243.00 P101 223.60 P128 239.46 P155 270.56
P21 223.13 P48 244.94 P75 267.61 P102 208.03 P129 408.90 P156 239.09
P22 202.76 P49 423.01 P76 241.35 P103 283.88 P130 273.39 P157 305.77
P23 266.03 P50 279.38 P77 282.57 P104 242.57 P131 217.84 P158 235.82
P24 244.64 P51 212.08 P78 240.35 P105 281.41 P132 216.23 P159 435.81
P25 264.39 P52 212.06 P79 439.70 P106 241.23 P133 295.57 P160 283.46
P26 244.32 P53 282.31 P80 273.19 P107 293.16 P134 236.97 Fuel cost ($/h):

�10004.20P27 284.85 P54 242.06 P81 223.43 P108 240.61 P135 258.96

Table 8
Comparison between different methods taken after 50 trials (160-generators system).

Methods Generation cost ($/h) Time/iteration (S) No. of hits to Min solution

Max Min Average

ORCCRO 10004.45 10004.20 10004.21 0.019 48
ED-DE[40] NA 10012.68 NA NA NA
CGA-MU[40] NA 10143.73 NA NA NA
IGA-MU[40] NA 10042.47 NA NA NA
BBO 10010.59 10008.71 10009.16 0.62 40
DE/BBO 10010.26 10007.05 10007.56 0.56 42
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structure size, no significant improvement of fuel cost has been
observed. Moreover, beyond PopSize = 50, simulation time also
increases. Best output obtained by ORCCRO algorithm for each
molecular structure size is presented in Table 10.
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Fig. 5. Convergence characteristic of 160-generator system, obtained by ORCCRO, BBO and DE/BBO.

Table 9
Effect of molecular size on 160-generators system.

Molecular size Size No. of hitsto Best Solution Simulation time (S) Max cost ($/h) Min cost ($/h) Average cost ($/h)

20 25 17.15 10006.13 10005.52 10005.83
50 48 19.21 10004.45 10004.20 10004.21
100 22 21.20 10005.76 10005.33 10005.57
150 15 28.20 10005.99 10005.58 10005.87
200 12 34.81 10006.25 10005.90 10006.17

Table 10
Effect of different parameters on performance of orccro (minimum fuel cost obtained for test case-4).

Initial KE b a MoleColl Jr KELossRate

0.1 0.2 0.5 0.6 0.8 0.9

2000 1000 2000 0.9 0.9 10005.45 10004.82 10004.39 10004.38 10004.37 10004.41
1800 900 1500 0.8 0.8 10005.10 10004.78 10004.38 10004.37 10004.37 10004.37
1600 800 1300 0.75 0.75 10004.93 10004.66 10004.36 10004.35 10004.35 10004.35
1400 700 1000 0.70 0.7 10004.87 10004.44 10004.33 10004.33 10004.31 10004.34
1200 600 800 0.60 0.6 10004.79 10004.40 10004.32 10004.29 10004.29 10004.35
1000 500 600 0.50 0.5 10004.76 10004.37 10004.32 10004.26 10004.25 10004.33
800 400 400 0.40 0.4 10004.70 10004.34 10004.32 10004.25 10004.23 10004.31
600 300 300 0.30 0.3 10004.66 10004.32 10004.31 10004.25 10004.20 10004.31
400 200 200 0.20 0.2 10004.66 10004.33 10004.31 10004.30 10004.25 10004.31
200 100 100 0.10 0.1 10004.69 10004.33 10004.32 10009.31 10004.31 10004.31
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Therefore, optimum values of these tuned parameters are Pop-
Size = 50, InitialKE = 600, KELossRate = 0.8, b=300, MoleColl = 0.2,
a = 300, Jr = 0.3. Initial value of buffer = 0 is not selected using tun-
ing procedure; rather its value is assumed based on the value pre-
sented in sub section IIC of [26].
5.2. Comparative study

5.2.1. Solution Quality
Tables 1, 3, 5 and 7 present the best fuel cost obtained by ORC-

CRO for 4 different test systems. These costs are better compared to
the results obtained by many previously developed techniques
specially recently developed techniques like BBO, DE/BBO. These
are also shown in Tables 2, 4, 6 and 8. These tables also represent
the comparative studies for maximum, minimum and average val-
ues, obtained by different algorithms. From the results it is clear
that the performance of ORCCRO algorithm is better, in terms of
quality of solutions obtained, compared to many already existing
techniques.
5.2.2. Computational efficiency
Time taken by ORCCRO to achieve minimum fuel costs, is quite

less compared to that obtained by BBO, DE/BBO and many other
techniques. These are shown in Tables 2, 4, 6 and 8. These results
prove significantly better computational efficiency of ORCCRO.
Again for the use of oppositional based learning into RCCRO the
systems convergence characteristics are become smooth and get
converge within minimum time.
5.2.3. Robustness
Performance of any heuristic algorithms cannot be judged by

the results of a single run. Normally their performance is judged
after running the programs of those algorithms for certain number
of trials. Many numbers of trials should be made to obtain a useful
conclusion about the performance of the algorithm. An algorithm
is said to be robust, if it gives consistent result during these trial
runs. Tables 2, 4, 6 and 8 present that out of 50 numbers of trials
for four different test systems. ORCCRO reaches to the minimum
costs 50, 50, 48 and 48 times respectively. That means the
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efficiency of ORCCRO algorithm to reach minimum solution is 100%
and 96% respectively. On the other hand BBO, DE/BBO reach to the
minimum costs (44, 41, 41, 40) and (46, 45, 43, 42) times respec-
tively. Therefore performance of ORCCRO is much superior com-
pared to BBO, DE/BBO and many other algorithms, presented in
the different literatures.

Therefore, the above results establish the enhanced ability of
ORCCRO to achieve superior quality solutions, in a computational
efficient and robust way.

6. Conclusion

In this paper, a newly developed ORCCRO algorithm has been
successfully implemented to solve different non-convex large scale
ELD problems. Analyses of all the simulation results reveal that the
performance of ORCCRO in all respect is better in comparison with
the previously developed several optimization techniques. The
ORCCRO achieves superior quality solutions near global solutions
with high convergence speed and robustness compared to other
methods. We also explored the effect of parameter setting and var-
ious numbers of molecular structures on the ORCCRO. Therefore,
ORCCRO can be considered as one of the strongest tools to solve
complex ELD problems. In future, ORCCRO can also be tried for
solution of complex hydrothermal scheduling, dynamic ELD, opti-
mal power flow problems in search for good characteristics results.
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