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This paper presents a Real Coded Chemical Reaction algorithm (RCCRO) approach to solve the Economic
Emission Load Dispatch (EELD) problem of thermal generators of power systems. Emission substance like
NOX, power demand equality constraint and operating limit constraint are considered here. EELD prob-
lem has been originated as a multi-objective problem by considering both economy and emission simul-
taneously. Chemical Reaction Optimization (CRO) mimics the interactions of molecules in a chemical
reaction to reach a low energy stable state. Basically, the CRO is designed to work in the discrete domain
optimization problems. A real coded version of it, known as Real-Coded Chemical Reaction Optimization
(RCCRO) is applied here to solve multi-objective EELD problems, in order to show the advantages of pro-
posed algorithm to solve complex continuous optimization problems. Different test systems having 10,
13 and 40 generators, addressing valve-point loading and NOX emission have been considered. The solu-
tions obtained are quite encouraging and superior to different existing optimization techniques.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Power system Economic Load Dispatch (ELD) is the most effi-
cient, reliable and low cost operation of power system dispatching
generation among the available generating units such that the cost
of operation is least, subject to load demand and other operational
constraints. However, since 1980s due to implementation of sev-
eral pollution control acts, finding out of minimum generation cost
is not only the major concern of the power generating companies.
These industries are bound to consider the effect of pollutants like
NOX, SOX, COX, etc. that are present in the waste matter which
come out from the stack of thermal power plant. Economic Emis-
sion Dispatch (EED) has come out to minimize the emission of pol-
lutants like NOX, SOX, COX, particulate matters, etc. from the
thermal power plant. Moreover, the objective of minimum cost
of generation or the objective of minimum emission may not be
a desirable criterion. Therefore, the concept of Economic Emission
Load Dispatch (EELD) has come into the picture to figure out both
the objective of minimum cost of generation and as well as mini-
mum emission level at the same time. In a sentence it can be said
that the combination of Economic Load and Emission Dispatch
problem is known as Economic Emission Load Dispatch (EELD)
and it seeks a balance between cost and emission. This problem
of EELD may be formulated as a multi-objective Economic Emis-
sion Load Dispatch (EELD) problem or an Emission Constrained
Economic Load Dispatch problem.

Several strategies have been proposed in [1,2] and discussed to
reduce the emission. One of the first approaches to solve the EED
problem considering single-objective optimization was described
in [3] by considering emission as a constraint. Nanda et al. treated
EELD as a multiple-objective optimization problem using goal-pro-
gramming techniques [4,5]. Probability security criteria ap-
proaches by considering economy, security and environment
protection as objectives [6] and linear programming technique
[7] were also used in multi-objective ELD problem. Dhillon et al.
and Chang et al. used the cost of generation and emission both
as a single objective in [8,9]. Abido [10–12] used non-dominated
sorting genetic algorithm (NSGA) and evolutionary programming
for solving multi-objective environmental and economic dispatch.
The e-constraint method was presented in [13] to use it in a non-
convex optimal problem. Srinivasan et al. proposed a fuzzy optimal
search technique in Multi-objective generation scheduling [14].
Huang et al. proposed a new technique fuzzy satisfaction-maxi-
mizing decision approach [15] in bi-objective power dispatch. A
genetic algorithm with arithmetic crossover technique [16], the re-
fined genetic algorithm (RGA) [17], evolutionary algorithm [18]
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based method have been also implemented for EELD problems.
Multi-objective stochastic search technique was proposed in [19].
Fonseca CM [20] applied evolutionary algorithm method. In [21–
23], evolutionary algorithm and PSO have been applied to solve
EELD problem to provide better solution. Perez-Guerrero and Cede-
no-Maldonado [24], Abou El Ela et al. [25], Basu [26] applied differ-
ential evolution and Wu et al. [27] presented a multi-objective
differential evolution (MODE) algorithm method to solve EELD.
Hota et al. [28] applied a new fuzzy based bacterial foraging algo-
rithm (MBFA) to solve both single and multi-objective EELD prob-
lems. In 2008, Biogeography-Based Optimization (BBO) [29] has
been developed by Dan Simon which has proved it’s worthy to
solve different optimization problems. In 2010, A. Bhattacharya
et al. applied BBO successfully to solve various multi-objective
EELD problems [30]. Hybrid technique of differential evolution
and Biogeography-Based Optimization (DE/BBO) [31] has been
adopted to solve different EELD problem in search for much im-
proved and fast output, compared to those of BBO. Recently Raja-
somashekar et al. formulated a new methodology using BBO
algorithm for finding out the best compromising solution between
fuel cost and NOX emission in EELD problems [32].

Yasar and Özyön [33] applied genetic algorithm along with
conic scalarization method to convert multi-objective problem into
single objective problem and solved the EELD problem of power
system. Same authors applied combined modified subgradient
technique along with harmony search [34] to solve EELD problems.
Chatterjee et al. [35] introduced an opposition based Harmony
Search Algorithm to solve EELD problems. Güvenç et al. applied
recently developed gravitational search algorithm (GSA) to
solve EELD problems [36]. Shaw et al. [37] incorporated the
opposition based learning scheme of [35] within gravitational
search algorithm (GSA) and implemented it for solving EELD
problems.

In recent times, a new optimization technique based on the
concept of chemical reaction, called Chemical Reaction Optimiza-
tion (CRO) has been proposed by Lam and Li [38]. In a chemical
reaction, the molecules of initial reactants stay in high-energy
unstable states and undergo a sequence of collisions either with
walls of the container or with other molecules. The reactants pass
through some energy barriers, reach in low-energy stable states
and become the final products. CRO captures this phenomenon of
driving high-energy molecules to stable, low energy states,
through various types of on-wall or inter-molecular reactions.
CRO has been proved to be a successful optimization algorithm
in discrete optimization. Basically, the CRO is designed to work
in the discrete domain optimization problems. In order to make
this newly developed technique suitable for continuous optimiza-
tion domain, Lam et al. [39] have developed a real-coded version of
CRO, known as Real-Coded CRO (RCCRO). It has been observed that
the performance of RCCRO is quite satisfactory when applied to
solve continuous benchmark optimization problems. The improved
performance of RCCRO to solve different optimization problems
has motivated the present authors to implement this newly devel-
oped algorithm to solve different non-convex complex emission
dispatch problems.

2. Mathematical formulation of EELD problems

The following objectives and constraints are considered for
EELD problem.
2.1. Economic Load Dispatch (ELD)

The fuel cost function F1 of ELD problem is presented as given
below
F1 ¼
XN

i¼1

FiðPiÞ
 !

¼
XN

i¼1

ai þ biPi þ ciP
2
i þ jei � Sinffi � ðPi min � PiÞgj

 !
$=h: ð1Þ

where Fi(Pi) is the ith generator cost function for Pi output; ai, bi and
ci are the ith generator’s cost coefficients; N is the number of gener-
ators. The objective function of (1) is minimized subject to follow-
ing constraints:

2.1.1. Real power balance constraint

XN

i¼1

Pi � ðPD þ PLÞ ¼ 0 ð2Þ

The total transmission network losses PL can be expressed using
B-coefficients as given below

PL ¼
XN

i¼1

XN

j¼1

PiBijPj þ
XN

i¼1

B0iPi þ B00 ð3Þ
2.1.2. Generator capacity constraints
From each unit power Pi generated shall be within their lower

limit Pimin or upper limit Pimax. So that

Pi min 6 Pi 6 Pi max ð4Þ

The power level of Nth generator (i.e. Slack Generator) is given
by the following equation

PN ¼ PD þ PL �
XðN�1Þ

i¼1

Pi ð5Þ

The transmission loss PL is a function of all the generators
including that of the slack generator (Nth Generator) and it is given
by

PL ¼
XN�1

i¼1

XN�1

j¼1

PiBijPj þ 2PN

XN�1

i¼1

BNiPi

 !
þ BNNP2

N þ
XN�1

i¼1

B0iPi

þ B0NPN þ B00 ð6Þ

Expanding and rearranging, Eq. (5) using (6) becomes

BNNP2
N þ 2

XN�1

i¼1

BNiPi þ B0N � 1

 !
PN

þ PD þ
XN�1

i¼1

XN�1

j¼1

PiBijPj þ
XN�1

i¼1

B0iPi �
XN�1

i¼1

Pi þ B00

 !
¼ 0 ð7Þ

The loading of the dependent generator called slack generator
(i.e. Nth) can then be found by solving (7).

2.2. Economic Emission Dispatch (EED)

The EED problem for NOX gases emission can be defined as

F2 ¼
XN

i¼1

FXiðPiÞ
 !

¼
XN

i¼1

10�2ðai þ biPi þ ciP
2
i Þ

 !
þ ni expðkiPiÞ Ton=h ð8Þ

where F2 is total amount of NOX released from the system in (kg/h
or ton/h); FXi(Pi) is the ith generator’s emission function for Pi out-
put; ai, bi, ci, ni and ki are the emission coefficients of ith generator.
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The above equation is minimized subject to the following con-
straints mentioned in (2) and (4).

2.3. Economic Emission Load Dispatch (EELD)

The EELD seeks a balance between cost and emission. The EELD
problem can be formulated as,

Minimize C ðf 1; fnÞ ð9Þ

where ‘n’ can be 2 or 3 or more depending on number of objective
function. This equation is minimized subject to the constraint as gi-
ven in (2) and (4).

The ELD and EED problem are conflicting in nature as the ELD
reduces the total fuel cost of the system, without any concern
about the rate of emission. EED, on the contrary, reduces the total
emission from the system, which generally causes an increase in
the system operating cost. As EELD seeks a balance between the
fuel cost and emission hazards simultaneously, therefore this prob-
lem may be considered as a multi-objective optimization problem.

The above mentioned multi-objective optimization can be
solved using Fuzzy set theory along with any conventional optimi-
zation techniques [28], weighted sum method and many other
techniques. Again, the above mentioned multi-objective problem
can be solved after converting EELD problem to a single objective
optimization problem by introducing the concept of price penalty
factors (PPF) [40]. According to the concept of price penalty factor,
the total operating cost of the system is the cost of generation plus
the implied cost of emission. If number of objective function is two,
i.e. when fuel cost and NOX emission is considered, the overall
objective function may be formulated with the help of PPF and rep-
resented as:

Minimize C ¼
Xn

i¼1

½wFiðPiÞ þ ð1�wÞhEiðPiÞ� ð10Þ

Here ‘h’ is the price penalty factor which is blending the emis-
sion costs with the normal fuel costs and ‘w’ is the trade-off param-
eter in the range of [0,1]. This equation is minimized subject to
demand constraint and generating capacity limits as given in (2)
and (4). When the value of w is 1 the objective function represents
fuel cost of generation function and when w is equal to 0, the
objective function represents emission function only. It is very dif-
ficult to make a solution that will give the best compromising solu-
tion (BCS) which lie nearer to both of the best solution. The fuel
cost increases and the emission cost decreases when w is reduced
in steps from 1 to 0. The problem becomes purely EED that mini-
mizes only the emissions when w is equal to 0.

The constrained optimization problem of Eq. (10) along with
the constraints of (2) and (4) can be solved for optimal generations
for a chosen value of w. The Pareto front based on the non-domi-
nated solution can be obtained by solving the problem several
times with different w values. However it may not yield the best
compromising solution, which may be defined as the one with
equal percent deviations from the optimal solutions corresponding
to ELD and EED. The BCS can be obtained simply by setting w as 0.5
[32], if the chosen h parameter does make fuel cost and emission
cost components to the same level in the objective function. If
the fuel cost component of Eq. (10) is larger than the equivalent
emission cost, then the optimization process attempts to give more
importance to fuel cost than emission cost and vice versa. Besides,
the fuzzy based strategies [28] and the methods based on compe-
tition [10] may not provide satisfactory results.

Recently Rajasomashekar et al. [32] proposed a method to find
the best compromising solution. The drawbacks of the existing ap-
proaches is overcome, after expressing bi-objective function of Eq.
(10) in a modified way after normalizing the fuel cost and emission
components with a view to provide relatively equal significance to
both the objectives. The modified overall objective function may be
represented as:

Min C ¼ w
Pn

i¼1FiðPiÞ � F1min

F1max � F1 min

� �
þ ð1�wÞ

Pn
i¼1FXiðPiÞ � F2min

F2max � F2min

� �
ð11Þ

where FXi(Pi) is the value of emission and Fi(Pi) represents the total
cost of generations. The values of F1max, F1min, F2max, F2min can how-
ever be obtained after solving ELD and EED problems individually
using (1) and (8) respectively, subject to the constraints of (2) and
(4). As cost and emission functions are conflicting in nature. There-
fore, solution of ELD problem will provide the value of F1min, F2max.

Similarly Solution of ELD problem will give the value of F1max,
F2min. The modified normalized representation of objective function
for EELD problem has the following advantages [32]:

(i) Eq. (11) eliminates the use of price penalty factor, h which is
one of the advantages (as calculation procedure of PPF nor-
mally needs some approximation).

(ii) Moreover, this new problem formulation offers best com-
promising solution (BCS) when w is set to 0.5 [32] and the
overall solution process involves only three runs for solution
of ELD, EED and EELD problems. But, fuzzy based strategies
require several solution runs with different w values. The
existing approaches provide a solution, whose fuel cost is
very close to the best fuel cost while keeping the emission
components far away from the best emission point and vice
versa. This indicates that the relative importance given to
both objectives are unequal. But according to [32], the new
problem formulation (11) based optimization process gives
almost equal importance to both the fuel cost and emission
components and brings their values to lie in the same range.
The amount by which best compromising solutions deviate
from the global best fuel cost and emissions are calculated
using the following indices:

ðFuel Cost Performance IndexÞ FCPI

¼
Pn

i¼1FiðPiÞ � F1 min

F1max � F1 min

� �
� 100 ð12Þ

ðEmission Cost Performance IndexÞ ECPI

¼
Pn

i¼1FXiðPiÞ � F2 min

F2max � F2min

� �
� 100 ð13Þ

However, the relative significance between fuel cost and emis-
sions can be varied by altering w in between 0 and 1 in the objec-
tive function of (11). It permits the system operator to decide on
different preferences for the objectives according to system operat-
ing conditions.

In the present paper, (11) is used as the objective function and it
is used for optimization subject to the constraints of (2) and (4), for
finding best compromising solutions.
3. Real-Coded Chemical Reaction Optimization (RCCRO)

This section presents an interesting new optimization algorithm
called Chemical Reaction Optimization (CRO) which has been re-
cently proposed in [38].

CRO loosely mimics what happens to molecules in a chemical
reaction system. Every chemical reaction tends to release energy,
and thus, products generally have less energy than the reactants.
In terms of stability, the lower the energy of the substance, the
more stable it is. In a chemical reaction, the initial reactants in
the high-energy unstable states undergo a sequence of collisions,
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pass through some energy barriers, and become the final products
in low-energy stable states. Therefore, products are always more
stable than reactants. It is not difficult to discover the correspon-
dence between optimization and chemical reaction. Both of them
aim to seek the global optimum with respect to different objectives
and the process evolves in a stepwise fashion. With this discovery,
the chemical-reaction-inspired metaheuristic, called Chemical
Reaction Optimization (CRO) [38] has been developed by Lam
et al. in 2010.

However this paper is the extension of CRO. CRO has been al-
ready proved to be a successful optimization algorithm with differ-
ent applications [39], most of which are discrete optimization
problems. In order to make this optimization technique suitable
for continuous optimization problems, Lam et al. presented a mod-
ified version of CRO in 2012, which is termed as Real-Coded Chem-
ical Reaction Optimization (RCCRO) [39].

In the following subsections, major components based on de-
sign of the chemical reaction, i.e., molecules and elementary reac-
tions are described. The basic operational steps of RCCRO are
described below.

3.1. Major Components of RCCRO

3.1.1. Molecules
The manipulated agents those are involved in a reaction are

known as molecules. Three main properties of each molecule are:
(1) the molecular structure X; (2) current potential energy (PE);
(3) current kinetic energy (KE), etc. The meanings of the attributes
in the profile are given below:

3.1.1.1. Molecular Structure. X actually represents the solution cur-
rently held by a molecule. Depending on the problem; X can be in
the form of a number, an array, a matrix, or even a graph. In this
paper molecular structure has been represented in a matrix form.

3.1.1.2. Current PE. PE is the value of objective function of the cur-
rent molecular structure X, i.e., PEX = f (X).

3.1.1.3. Current KE. KE provides the tolerance for the molecule to
hold a worse molecular structure with higher PE than the existing
one.

3.2. Elementary reactions

In CRO, several types of collisions occur. These collisions occur
either between the molecules or between the molecules and the
walls of the container. Depending upon the type of collisions, dis-
tinct elementary reactions occurs, each of which may have a differ-
ent way of controlling the energies of the involved molecule(s).
Four types of elementary reactions normally occur. These are: (1)
on-wall ineffective collision; (2) decomposition; (3) intermolecular
ineffective collision; and (4) synthesis. On wall ineffective collision
and decomposition are unimolecular reactions when the molecule
hits a wall of the container. Inter-molecular ineffective collision
and synthesis involve more than one molecule. Successful comple-
tion of an elementary reaction results in an internal change of a
molecule (i.e., updated attributes in the profile). Different types
of elementary reactions are described below:

3.2.1. On wall ineffective collision
When a molecule hits a wall and bounces back, a small change

occurs of its molecular structure and PE. As the collision is not so
vigorous, the resultant molecular structure is not too different
from the original one. If X and X0 represents the molecular structure
before and after the on-wall collision respectively, then this
collision tries to transform X to X0, in the close neighborhood of
X, that is

X0 ¼ X þ D ð14Þ

where D is a perturbation for the molecule. There are many proba-
bility distributions which can be used to produce probabilistic per-
turbations, e.g., Gaussian, Cauchy, lognormal, exponential, Student’s
T and many others. In this paper, Gaussian distribution has been
employed. By the change of molecular structure, PE and KE also
change from PEX to PEX0 and KEX to KEX0 . This change will happen
only if

PEX þ KEX P PEX0 ð15Þ

If (13) does not hold, the change is not allowed and the mole-
cule retains its original X, PE and KE. Due to interaction with a wall
of the container, a certain portion of molecule’s KE will be ex-
tracted and stored in the central energy buffer (buffer) when the
transformation is complete. The size of KE loss depends on a ran-
dom number a1 2 [KELossRate,1], where KELossRate is a parameter
of CRO. Updated KE and buffer is represented as

KEX0 ¼ ðPEX � PEX0 þ KEXÞ � a1 ð16Þ

buffer ¼ buffer þ ðPEX þ KEX � PEX0 Þ � ð1� a1Þ ð17Þ
3.2.2. Decomposition
In decomposition, one molecule hits the wall and breaks into

two or more molecule e.g., X 01 and X 02. Due to change of molecular
structure, their PE and KE also changes from PEX to PEX01

and PEX02
,

and KEX to KEX01
and KEX02

. This change is allowed, if the original
molecule has sufficient energy (PE and KE) to endow the PE of
the resultant ones, that is

PEX þ KEX P PEX01
þ PEX02

ð18Þ

Let temp1 ¼ PEX þ KEX � PEX01
� PEX02

: Then,

KEX01
¼ k� temp1 and KEX02

¼ ð1� kÞ � temp1 ð19Þ

where k is a random number uniformly generated from the interval
[0,1]. (16) holds only when KEX is large enough. Due to the conser-
vation of energy, X sometimes may not have enough energy (both
PE and KE) to sustain its transformation into X01 and X02. To encour-
age decomposition, a certain portion of energy, stored in the central
buffer (buffer) can be utilized to support the change. In that case
modified condition is

PEX þ KEX þ buffer P PEX01
þ PEX02

ð20Þ

The new KE for resultant molecules and buffer are

KEX01
¼ ðtemp1þ bufferÞ �m1�m2 ð21Þ

KEX02
¼ ðtemp1þ bufferÞ �m3�m4 ð22Þ

buffer ¼ buffer þ temp1� KEX01
� KEX02

ð23Þ

where values of m1, m2, m3 and m4 are taken randomly in between
[0,1]. To generate X 01 and X02, any mechanism which creates X01 and
X02 quite different from X, is acceptable. However, in this paper, pro-
cedure mentioned in Section 3.2 of [39] is used.

3.2.3. Intermolecular ineffective collision
An intermolecular ineffective collision happens when two mol-

ecules collide with each other and then bounce away. The effect of
energy change of the molecules is similar to that in an on-wall inef-
fective collision, but this elementary reaction involves more than
one molecule and no KE is drawn to the central energy buffer. Sim-
ilar to the on-wall ineffective collision, this collision is also not
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vigorous, therefore the new molecular structure are generated in
the neighborhood of previous molecular structures. In this paper,
new molecular structures are created using the same concept men-
tioned in on-wall ineffective collision. Suppose, the original molec-
ular structures are X1 and X2 are transformed after collision and
two new molecular structures are X01 and X02 respectively. The
two PE are changed from PEX1 and PEX2 to PEX01

and PEX02
. The two

KE are changed from KEX1 and KEX2 to KEX01
and KEX02

. The change
to the molecules are acceptable only if

PEX1 þ PEX2 þ KEX1 þ KEX2 P PEX01
þ PEX02

ð24Þ

The new values of KE are calculated as

KEX01
¼ ðPEX1 þ PEX2 þ KEX1 þ KEX2 � PEX01

� PEX02
Þ � aaa1 ð25Þ

KEX02
¼ ðPEX1 þ PEX2 þ KEX1 þ KEX2 � PEX01

� PEX02
Þ � ð1� aaa1Þ

ð26Þ

where aaa1 is a random number uniformly generated in the interval
[0,1]. If the condition of (22) fails, the molecules maintain the origi-
nal X1, X2, PEX1 , PEX2 , KEX1 and KEX2 .

3.2.4. Synthesis
Synthesis is a process when two or more molecules (in present

paper two molecules X1 and X2) collide with each other and com-
bine to form a single molecule X0. The change is vigorous. As in
decomposition, any mechanism which combines two molecules
to form a single molecule may be used. In this paper, procedure
mentioned in section IIIB of [39] is used to create X0. The two PE
are change from PEX1 and PEX2 to PEX0 . The two KE are change from
KEX1 and KEX2 to KEX0 . The modification is acceptable if

PEX1 þ PEX2 þ KEX1 þ KEX2 P PEX0 ð27Þ

The new value of KE of the resultant molecule is

KEX0 ¼ PEX1 þ PEX2 þ KEX1 þ KEX2 � PEX0 ð28Þ

If condition of (25) is not satisfied, X1, X2 and their related PE
and KE are preserved. The pseudo codes for all above-mentioned
elementary reaction steps are available in [38].
3.3. Sequential steps of RCCRO algorithm

The three stages in CRO: initialization, iteration, and the final
stage are mentioned below:

(1) In initialization stage, choose unknown variables (n) num-
ber. Arrange the initial structure for the molecules and the
different parameters i.e., PopSize, KELossRate, MoleColl, buffer,
InitialKE, a, and b. Also indicate the lower and upper bounds
of unknown variables of the given problem.

(2) Randomly generate each molecule set of the unknown vari-
ables of the problem within their effective lower and upper
bounds and the molecule set must satisfying different con-
straints. Each molecule set characterizes a potential solution
of the problem. Generate (PopSize � n) molecule set to create
Molecular matrix.

(3) Determine PEs of each molecule set, by their corresponding
objective function values. Set their initial KEs to InitialKE.

(4) During iterative process, first check which type of reaction to
be held. Random create an unknown variable number
b 2 [0,1]. If b is greater than MoleColl (which is initialized
earlier) or there is only one molecule left, the reaction take
place is a uni-molecular reaction, otherwise it is an intermo-
lecular reaction.
(5) In a uni-molecular reaction, choose one molecule from the
molecule set randomly and check whether it satisfies the
decomposition criterion: (number of hits � minimum hit
number) > a. Where a is the tolerance of duration for the
molecule without obtaining any new local minimum
solution.

If decomposition criterion satisfies, perform decomposition
steps; else perform on-wall ineffective collision steps.

For decomposition if (16), (18) are satisfied, modify KE and buf-
fer using (17), (19), (20), and (21) respectively. Similarly for on wall
ineffective collision if (13) is satisfied then modify KE and buffer
using (14) and (15) respectively. For both the cases, modify the
PE of each molecule set using their objective function value.

(6) For each intermolecular reaction, select two (or more) mol-
ecule sets randomly from the molecular matrix and test
the synthesis criterion: (KE 6 b) where, b is the minimum
KE a molecule should have.

If the condition is satisfied, perform the synthesis steps; other-
wise, perform different steps of an intermolecular ineffective
collision.

For synthesis if (25) is satisfied, modify KE using (26). For inter-
molecular collision, if (22) is satisfied, modify KE using (23) and
(24). PE of each modified molecule set is calculated in the same
way as mentioned in step 5.

(7) If the maximum no. of iterations is reached or specified
accuracy level is achieved, terminate the iterative process,
otherwise go to step 4 for continuation.

Interested readers may refer [38], which contains the detail
steps of the CRO Algorithm.

3.4. RCCRO algorithm for EELD problem

This subsection describes the procedure for implementation of
the RCCRO algorithm for solving the EELD problems. The sequen-
tial steps of the RCCRO algorithm applied to solve EELD problem
are as follows:

1. Representation of the molecular structure X: Since the estimation
variables for EELD problem with consideration of cost minimi-
zation and emission minimization are real power output of
the generators, they are representing the individual molecular
structure. For initializations choose the number of generator
units m and the total number of molecular structure, PopSize.

The complete molecular structure is represented in the form of
the following matrix:

X ¼ Xi ¼ ½X1;X2;X3; . . . ;XPopSize� where i ¼ 1;2; . . . ; PopSize

In case of EELD problem, each molecular set is presented as:

Xi ¼ ½Xi1;Xi2; . . . ;Xim� ¼ ½Pgij� ¼ ½Pgi1; Pgi2; . . . ; Pgim�;

where j = 1, 2, . . . ,m. The element Xij of Xi is the jth position compo-
nent of the ith molecule set.
2. Initialization of the Molecule set: Each individual element of the

Molecular structure matrix, i.e., each element of a given mole-
cule set X, is initialized randomly within the effective real
power upper and lower limit of power generations. The initial-
ization is based on (4) for generators with minimum and the
maximum output power limits.



Table 1
Minimum fuel cost and minimum emission obtained by RCCRO for Test system-1
(PD = 2000 MW).

Units Power outputs (MW)

Minimum cost Minimum emission

1 55.0000 55.0000
2 79.9999 80.0000
3 106.9220 81.1342
4 100.5426 81.3637
5 81.5216 160.0000
6 83.0528 240.0000
7 299.9999 294.4851
8 339.9999 297.2701
9 469.9999 396.7657
10 469.9999 395.5763
Total generation 2087.0387 2081.5952
Loss (MW) 87.0387 81.5952
Cost ($) 111497.6319 116412.4441
Emission (Ib) 4571.9552 3932.2433

K. Bhattacharjee et al. / Electrical Power and Energy Systems 59 (2014) 176–187 181
3. Evaluation of PE: In this case of EELD problems, Potential energy
PE, of each molecule set is represented by the total fuel cost of
generation or emission for all the generators of that given mol-
ecule set. In case of ELD problems, it is calculated using (1) for
the system having valve point loading. In case of EED problems
it is calculated using (8) for the system having complex emis-
sion characteristic. Using (11) PE is calculated for different val-
ues of w, in case of EELD problems. As (11) contains F1max, F1min,
F2max, F2min terms, therefore solution of ELD and EED problem is
required to get the values of those terms. Therefore, it is
required to run ELD and EED programs first before running
EELD program.

Now the steps of algorithm to solve EELD problems are given
below.

Step 1. For initialization, choose no. of generator units, m; num-
ber of molecule set, PopSize. Set no. of elite molecule sets, ‘p’.
Specify maximum and minimum capacity of each generator,
power demand, loss coefficient matrix for calculation of trans-
mission loss. Also initialize the RCCRO parameters like KELoss-
Rate, MoleColl, buffer, InitialKE, a, and b, etc. Set maximum
number of iterations, Itermax.
Step 2. Initialize the value of w. Set its starting value as w = 0.
Step 3. Initialize each element of a given molecule set of X
matrix using the concept mentioned in ‘‘Initialization of the Mol-
ecule set’’. Each molecule set of X matrix should satisfy equality
constraint (2) using the concept of slack generator as presented
in Section 2.1.
Step 4. Calculate the PE for each molecule set of the molecular
structure matrix X, based on (11), for given initial Kinetic
Energy (KE) InitialKE.
Step 5. Based on the PE values identify the best molecule set,
which give best value of (11) for the specified value of w. Keep
top ‘p’ molecule sets unchanged after individual iteration, with-
out making any modification on it.
Step 6. Create a random number b 2 [0,1]. If b is greater than
MoleColl or there is only one molecule left (at the later stage
of iterative procedure, this condition may hold), perform a uni-
molecular reaction, else perform an intermolecular reaction.
Step 7. If unimolecular reaction is selected, randomly choose
one molecule set from the whole X matrix and check whether
it satisfies the decomposition criterion.

If decomposition condition is satisfied, elementary reaction of
decomposition on that particular molecule set have to be perform.
Create two new molecule sets using the steps mentioned in Sec-
tion 3.2 of [39]. Calculate PE of the new molecule sets, using the
concept mentioned in ‘‘Evaluation of PE’’. If the condition men-
tioned in (16), (18) are satisfied, modify KE of new molecule sets
using (17), (19), (20). Modify buffer level using (21).

If decomposition condition is not satisfied, perform on wall
ineffective collision. Create two new molecule sets from the molec-
ular matrix using Gaussian distribution and using the procedure
mentioned in Subsection 3.2.1 Calculate PE of the newly created
molecule set. Verify if the condition mentioned in (13) is satisfied
then modify KE and buffer of new molecule set using (14) and (15)
respectively.

Step 8. From step 6, if intermolecular reaction is chosen, select
two (or more) molecule sets randomly from the molecular
matrix X and test the synthesis criterion (KE 6 b).

If the synthesis criterion is satisfied, go through the synthesis
steps. Create a new molecule set from the two selected molecule
sets following the procedure given in Section 3.2 of [39]. Calculate
PE of the new molecule set. After new molecule creation, if the con-
dition of (25) is satisfied, modify KE of new molecule set using (26).

If the condition mentioned in step 8 is not satisfied, perform
intermolecular ineffective collision. Create two new molecule sets
in the neighborhood of selected molecule sets following Gaussian
distribution and the procedure mentioned in Subsection 3.2.1. Cal-
culate PE of the new molecule set. After new molecule set creation,
if condition presented in (22) is satisfied, modify KE of new mole-
cule sets using (23) and (24).

Step 9. After each elementary reaction, verify the feasibility of
each newly generated molecule set of the modified X matrix.
Each individual element of the modified molecule set must sat-
isfy the generator operating limit constraint of (4) and power
demand constraint of (2). If any element of a molecule set vio-
lates any of the operating limits, then fix the values of those ele-
ments of the molecule set at the limit hit by them.
Step 10. Terminate the iterative process, if current iteration is
greater than or equal to the maximum iteration. Store the best
power outputs obtained in an array ‘‘Optimal Set’’; otherwise
repeat the steps 4–9.
Step 11. Increment the value of ‘w’ in step of 0.05 and repeat the
steps starting from step 3 to step 10, until the value of ‘w’
reaches to 1.
Step 12. Best compromising solution: Calculate the value of fuel
cost of generation and emission for each solution sets, those
are obtained for different values w and stored in the array ‘‘Opti-
mal Set’’. Use (1) and (8) to calculate fuel cost of generation and
emission respectively for each set. Calculate FCPI and ECPI using
the equations mentioned at the end of Subsection 2.3, for each
fuel cost of generation and emission set. Evaluate the absolute
value of difference between FCPI and ECPI for each fuel cost of
generation and emission set. The set that attains minimum
absolute value of difference between FCPI and ECPI is chosen
as the best compromising solution. The fuel cost of generation
and emission values associated with that set represent the best
compromising fuel cost and emission. Find the power output of
that set from the ‘‘Optimal Set’’ array.
4. Numerical examples and simulation results

The RCCRO algorithm has been applied to three different test
systems with varying degree of complexity for verifying its feasi-
bility. Transmission loss has been calculated using loss coefficient
matrix. The program has been written in MATLAB-7.5 language



Table 2
Comparison of the best compromising solutions for Test system-1 (PD = 2000 MW).

Units MODE [26] PDE [26] NSGA-II [36] SPEA 2 [36] GSA [36] RCCRO

P1 (MW) 54.9487 54.9853 51.9515 52.9761 54.9992 55.0000
P2 (MW) 74.5821 79.3803 67.2584 72.8130 79.9586 80.0000
P3 (MW) 79.4294 83.9842 73.6879 78.1128 79.4341 85.6453
P4 (MW) 80.6875 86.5942 91.3554 83.6088 85.0000 84.1259
P5 (MW) 136.8551 144.4386 134.0522 137.2432 142.1063 136.5034
P6 (MW) 172.6393 165.7756 174.9504 172.9188 166.5670 155.5801
P7 (MW) 283.8233 283.2122 289.4350 287.2023 292.8749 300.0000
P8 (MW) 316.3407 312.7709 314.0556 326.4023 313.2387 316.6746
P9 (MW) 448.5923 440.1135 455.6978 448.8814 441.1775 434.1252
P10 (MW) 436.4287 432.6783 431.8054 423.9025 428.6306 436.5724
Cost ($/h) 11.348 � 105 1.1351 � 105 1.1354 � 105 1.1352 � 105 1.1349 � 105 113355.7454
Emission (lb) 4124.9 4111.4 4130.2 4109.1 4111.4 4121.0684
FCPI 40.33 40.94 41.56 41.15 40.54 37.81
ECPI 30.12 28.01 30.94 27.65 28.01 29.52
Difference 10.21 12.93 10.62 13.50 12.53 08.29
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Fig. 1. Convergence characteristic for fuel cost minimization (Test system-1,
PD = 2000 MW), obtained by RCCRO.
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Fig. 2. Convergence characteristic for emission minimization (Test system-1,
PD = 2000 MW), obtained by RCCRO.
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Fig. 3. Trade-off curve obtained by RCCRO for Test system-1.
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and executed on a 2.5 GHz Intel Duel Core personal computer with
2-GB RAM.

4.1. Description of the test systems

(1) Test system 1: A 10 generators system having the effects of
valve-point loading on quadratic fuel cost function and
emission level functions are considered. The input data like:
cost coefficients, emission coefficients, operating limits of
generators and loss coefficients have been adopted from
[36]. The load demand is 2000 MW. The minimum fuel cost,
minimum NOX emission results obtained by proposed
RCCRO has been presented in Table 1. Minimum fuel cost,
minimum NOX emission obtained by RCCRO are
111497.6319206535 $ and 3932.243269290222 Ib respec-
tively. Comparisons of best compromising results obtained
by RCCRO, MODE [26], NSGA-II [26], SPEA [36] and GSA
[36] have been shown in Table 2. For above mentioned
methods, calculated values of FCPI and ECPI with respect
to minimum cost and emission results of RCCRO are also
presented in Table 2. The lower difference of 8.29 between
FCPI and ECPI for the test system ensures the validity of
the RCCRO in offering best compromising solution. Conver-
gence characteristics of the 10 generators system for mini-
mum fuel cost, minimum NOX emission in case of RCCRO
are shown in Figs. 1 and 2 respectively. Trade-off curve
obtained by RCCRO for different values of w using objective
function of (11) is shown in Fig. 3. As RCCRO is a stochastic
simulation method, randomness in the simulation result is
understandable. Many trials therefore are required to find
out the optimum results. Minimum, average and maximum
compromise solution obtained by RCCRO over 50 trials are
presented in Table 3. Again EELD is a real time problem, so
it is desirable that each run of the program should reach
close to optimum solution. Table 3 clearly indicate excellent
success rate, 100% of the RCCRO. From Table 3, it is clear that



Table 3
Minimum, average, maximum best compromise solution obtained by RCCRO over 50 trials (Test system-1, PD = 2000 MW).

Methods Total cost ($) Total emission (Ib) Average simulation
time (s)

No. of hits to optimum
solution

Standard
deviation

Max. Min. Average Max. Min. Average

RCCRO 113355.7454 113355.7454 113355.7454 4121.0684 4121.0684 4121.0684 0.9500 50 0.0000

Table 4
Comparison of minimum cost, minimum emission and best compromising solutions for Test system-2 (PD = 1800 MW).

Units Power outputs (MW)

BBO [32] RCCRO

Minimum cost Minimum emission Best compromise solution Minimum cost Minimum emission Best compromise solution

1 628.3185 80.6939 179.5196 628.3185 80.6407 179.0253
2 149.5996 166.3076 299.1993 222.7491 166.3287 224.1314
3 222.7391 166.8711 297.5728 149.5997 166.3287 298.4373
4 109.8665 154.7728 159.7331 109.8666 154.7332 159.7266
5 109.8665 155.4193 159.7331 60.0000 154.7332 159.7336
6 109.8665 154.8674 159.7331 109.8666 154.7332 159.7398
7 109.8665 154.7250 159.7331 109.8666 154.7332 159.7008
8 60.0000 154.5205 60.0000 109.8666 154.7332 159.6323
9 109.8665 154.7622 60.0000 109.8666 154.7332 109.8658
10 40.0000 119.4327 40.0000 40.0000 119.9637 40.0065
11 40.0000 119.2917 114.7661 40.0000 119.9637 40.0001
12 55.0000 109.2010 55.0000 55.0000 109.1877 55.0002
13 55.0000 109.1249 55.0000 55.0000 109.1877 55.0003
Fuel cost ($/h) 17960.346a 19098.756 18081.483b 17963.8292 19145.5678 18038.8367
Emission (Ton/h) 461.479 58.241 95.3095 461.4806 58.2407 85.6546
FCPI 0 100 10.641 0 100 6.3472
ECPI 100 0 9.193 100 0 6.7984
Difference 100 100 1.448 100 100 0.4513

a Exact generation cost for the above schedule is 17963.8298 $/h which is higher than that reported in [31].
b Exact generation cost for the above schedule is 18084.8966 $/h which is higher than that reported in [31].

0 50 100 150 200 250 300 350 400 450 500
1.79

1.8

1.81

1.82

1.83

1.84

1.85

1.86

1.87

1.88

1.89
x 104

Iterations

T
ot

al
 F

ue
l C

os
t (

$/
hr

.)

Fig. 4. Convergence characteristic for fuel cost minimization (Test system-2,
PD = 1800 MW), obtained by RCCRO.
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Fig. 5. Convergence characteristic for emission minimization (Test system-2,
PD = 1800 MW), obtained by RCCRO.
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Fig. 6. Trade-off curve obtained by RCCRO for Test system-2.
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the average cost and emission for the compromising
solutions (113355.7453982376 $, 4121.0684060678 Ib)
achieved by RCCRO is same as its minimum result
(113355.7453982376 $, 4121.0684060678 Ib). Moreover,
average simulation time of RCCRO is 0.95 s. which is the
proof of quite attractive computational efficiency of RCCRO.
All these results signify robustness and superiority of
RCCRO.

(2) Test system 2: A system with 13 generators and NOX emission
is considered in this case. The unit cost and emission coeffi-
cients, operating limits are as in [32]. Transmission loss has
not been considered here. The results of minimum fuel cost,
minimum NOX emission and best compromising solutions,
FCPI and ECPI obtained by RCCRO, BBO [32] for a demand



Table 5
Minimum, average, maximum best compromise solution obtained by RCCRO over 50 trials (Test system-2, PD = 1800 MW).

Methods Total cost ($/h) Total emission (Tin/h) Average simulation time
(s)

No. of hits to optimum
solution

Standard
deviation

Max. Min. Average Max. Min. Average

RCCRO 18038.836 18038.836 18038.836 85.6546 85.6546 85.6546 1.0500 50 0.0000

Table 6
Minimum fuel cost, minimum emission and best compromising solution for Test system-3 (PD = 10500 MW).

Units Power outputs for minimum cost (MW) Power outputs for minimum emission (MW) Power outputs for best compromising solution (MW)

MBFA [28] RCCRO MBFA [28] RCCRO MBFA [28] RCCRO

1 114.0000 110.7998 114.0000 114.0000 – 111.0511
2 110.8035 110.7998 114.0000 114.0000 – 111.1804
3 97.4002 97.3999 120.0000 120.0000 – 97.4009
4 179.7333 179.7331 169.3671 169.3680 – 179.7329
5 87.8072 87.7999 97.0000 97.0000 – 96.9995
6 140.0000 140.0000 124.2630 124.2574 – 139.9999
7 259.6004 259.5997 299.6931 299.7114 – 259.6001
8 284.6002 284.5997 297.9093 297.9149 – 284.5999
9 284.6006 284.5997 297.2578 297.2601 – 284.5997
10 130.0000 130.0000 130.0007 130.0000 – 130.0003
11 168.7999 94.0000 298.4210 298.4101 – 243.6001
12 168.7998 94.0000 298.0264 298.0260 – 243.5997
13 214.7598 214.7598 433.5590 433.5576 – 394.2794
14 304.5195 394.2794 421.7360 421.7284 – 394.2797
15 394.2794 394.2794 422.7884 422.7796 – 394.2793
16 394.2794 394.2794 422.7841 422.7796 – 394.2797
17 489.2794 489.2794 439.4078 439.4129 – 489.2794
18 489.2794 489.2794 439.4132 439.4029 – 489.2792
19 511.2795 511.2794 439.4111 439.4128 – 511.2789
20 511.2795 511.2794 439.4155 439.4129 – 511.2794
21 523.2794 523.2794 439.4421 439.4464 – 433.5193
22 523.2794 523.2794 439.4587 439.4464 – 433.5199
23 523.2796 523.2794 439.7822 439.7721 – 433.5210
24 523.2794 523.2794 439.7697 439.7721 – 433.5199
25 523.2795 523.2794 440.1191 440.1118 – 433.5205
26 523.2796 523.2794 440.1219 440.1118 – 433.5205
27 10.0001 10.0000 28.9738 28.9937 – 10.0000
28 10.0002 10.0000 29.0007 28.9937 – 10.0000
29 10.0002 10.0000 28.9828 28.9937 – 10.0001
30 89.5070 87.7999 97.0000 97.0000 – 96.9999
31 190.0000 190.0000 172.3348 172.3319 – 189.9999
32 190.0000 190.0000 172.3327 172.3319 – 189.9999
33 190.0000 190.0000 172.3262 172.3319 – 189.9999
34 164.8026 164.7998 200.0000 200.0000 – 199.9999
35 164.8035 194.3978 200.0000 200.0000 – 199.9998
36 164.8292 200.0000 200.0000 200.0000 – 199.9999
37 110.0000 110.0000 100.8441 100.8384 – 109.9999
38 110.0000 110.0000 100.8346 100.8384 – 109.9998824998
39 110.0000 110.0000 100.8362 100.8384 – 109.9999185985
40 511.2795 511.2794 439.3868 439.4129 – 511.2793671287
Total generation 10500.00 10500.00 10500.00 10500.00 10500.00 10500.00
Fuel cost ($/h) 121415.653 121412.5355 129995.000 129995.2695 123638.0000 124250.9514
Emission (Ton/h) 356424.497 359901.3816 176682.269 176682.2541 188963.0000 229395.9005
FCPI 0 0 100 100 25.9034 33.0712
ECPI 100 100 0 0 6.8324 28.7708
Difference 100 100 100 100 19.0710 4.3004
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of 1800 MW have been presented in Table 4. Minimum fuel
cost and minimum emission obtained by RCCRO is slightly
better than those obtained by BBO. Moreover, difference
between FCPI and ECPI, obtained by RCCRO and BBO are
0.451280 and 1.448 respectively. The lower difference
between FCPI and ECPI for the test system ensures the supe-
riority of RCCRO with respect to BBO in offering best com-
promising solutions. Convergence characteristic obtained
by RCCRO for minimum fuel cost and minimum NOX emis-
sion are shown in Figs. 4 and 5 respectively. The trade-off
curve for the test system obtained by RCCRO is shown in
Fig. 6. From the curve, it is quite evident that most attractive
best compromising solution of 18038.836654 $/h and
85.654645 Ton/h is obtained when w = 0.5. Minimum,
average and maximum compromise solutions obtained by
RCCRO, over 50 trials are presented in Table 5. Minimum,
average and maximum compromise solution
(18038.836654 $/h and 85.654645 Ton/h) obtained by
RCCRO over 50 trials are same. This reflects that the RCCRO
reaches the minimum solution in all 50 times. So conver-
gence rate of RCCRO is 100%. The simulation time required
by RCCRO, to reach minimum solution is 1.05 s, which is bet-
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Fig. 7. Convergence characteristic for fuel cost minimization (Test system-3,
PD = 10500 MW), obtained by RCCRO.
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Fig. 9. Trade-off curve obtained by RCCRO for Test system-3.

Table 7
Minimum, average, maximum best compromise solution obtained by RCCRO over 50 trial

Methods Total cost ($/h) Total emission (Tin/h)

Max. Min. Average Max. Min.

RCCRO 124250.9514 124250.9514 124250.9514 229395.9005 229395.90
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ter than the result (1.46 s) shown in [32]. The simulation
study clearly indicates that the RCCRO is able to offer supe-
rior performance than BBO and many other techniques
while solving medium size non-convex ELD, EED and EELD
problems.

(3) Test system 3: A system with 40 generator units with valve-
point loading and NOX emission has been considered in this
case. The unit cost and emission coefficients, operating limits
are as in [28]. Transmission loss has not been considered here.
The simulation results of minimum fuel cost, minimum NOX

emission and best compromising solutions, FCPI and ECPI
obtained by RCCRO, MBFA [28] for a demand of 10,500 MW
have been presented in Table 6. Minimum fuel cost and min-
imum emission obtained by RCCRO is slightly better than
those obtained by MBFA. Moreover, difference between FCPI
and ECPI, obtained by RCCRO and MBFA are 4.3004 and
19.0710 respectively. The difference value between FCPI
and ECPI for the test system guarantees the superiority of
RCCRO with respect to MBFA in offering best compromising
solutions. Convergence characteristic obtained by RCCRO
for minimum fuel cost and minimum NOX emission are
shown in Figs. 7 and 8 respectively. The trade-off curve for
the test system obtained by RCCRO is shown in Fig. 9. The fig-
ure shows that the best compromising solution of
124250.9513588847 $/h and 229395.9004752024 Ton/h is
obtained by RCCRO when w = 0.5. Minimum, average and
maximum best compromising solutions obtained by RCCRO,
over 50 trials are presented in Table 7. Same minimum, aver-
age and maximum best compromising solution
(124250.9513588847 $/h and 229395.9004752024 Ton/h)
have been obtained by RCCRO over 50 trials. Results reflect
that the RCCRO is very robust tool for solving complex ELD,
EED and EELD problems as its convergence rate is 100%. The
simulation time required by RCCRO, to reach minimum solu-
tion is 3.84 s, which is better than the result (63.21 s) pre-
sented in [28]. The simulation study clearly indicates that
the RCCRO is able to offer superior performance than MBFA
and many other techniques.

Hence, it may be concluded that the RCCRO is a computationally
efficient, fast and robust optimization technique to solve complex
small as well as large EELD problems.
4.2. Determination of parameters for RCCRO

To get optimum solution using RCCRO algorithm, it is necessary
to get proper values of different parameter like, kinetic energy loss
rate (KELossRate), initial kinetic energy (InitialKE) and b. For differ-
ent values of these parameters, difference between FCPI and ECPI
(based on best compromising solutions) are evaluated for 40 gen-
erators system (Test system-3) and are presented in Table 8. Tun-
ing of other RCCRO parameters like MoleColl, initial value of buffer,
a are also very important. Optimum settings of these parameters
are also tuned using the same procedure, as followed above. For
space limitation, the detail tuning procedure is not mentioned
here.
s (Test system-3, PD = 10500 MW).

Average
simulation time (s)

No. of hits to
optimum solution

Standard
deviation

Average

05 229395.9005 3.84 50 0.0000



Table 8
Effect of Different Parameters on performance of RCCRO, based on difference between
FCPI and ECPI for Test system-3.

InitialKE b KELossRate

0.1 0.2 0.5 0.6 0.8

2000 1000 10.0147 8.6210 7.8210 7.0140 6.8520
1800 900 9.6870 8.0208 7.5820 6.9900 6.2104
1600 800 8.5201 7.6501 7.1207 6.5207 5.8108
1400 700 8.0284 7.3259 6.8715 6.2571 5.5471
1200 600 7.5580 7.0287 6.5287 5.5580 5.1004
1000 500 7.3880 6.8570 5.8870 5.2888 4.8750

800 400 7.0018 6.2210 5.3327 4.9890 4.5287
600 300 6.5887 5.5556 5.1170 4.6681 4.3004
400 200 6.9884 5.8683 4.8850 4.6871 4.3552
200 100 7.1877 6.8920 5.5524 4.8957 4.6907

Table 9
Effect of Molecular Structure Size on performance of RCCRO, based on difference
between FCPI and ECPI for Test system-3.

Molecular
structure
size

No. of hits
to best
solution

Simulation
time (s)

Max.
difference

Min.
difference

Average
difference

20 33 3.71 4.4809 4.4009 4.4281
50 50 3.84 4.3004 4.3004 4.3004

100 38 4.06 5.6280 4.9250 5.0937
150 35 4.14 6.2001 5.8569 5.9599
200 31 4.71 7.8210 6.6654 7.1045
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Change in molecular structure size also affects the performance
of the RCCRO. Large or small value of molecular structure size may
not give the optimum value. For each molecular structure size of
20, 50, 100, 150 and 200, 50 trials have been run using Test sys-
tem-3. Table 9 shows the performance of the RCCRO for different
molecular structure sizes. A molecular structure size of 50 resulted
in achieving global solutions more consistently and efficiently for
the test system.

Therefore, after a number of careful experimentation, following
optimum values of RCCRO parameters have finally been settled:
molecular structure size = 50, InitialKE = 600, KELossRate = 0.8,
b = 300, MoleColl = 0.2, buffer = 0, and a = 300.
5. Conclusion

In this paper RCCRO has been successfully employed to solve
both small and large EELD problems. More complex fuel cost char-
acteristic is considered (such as valve point loading is considered in
all test systems). The results obtained by RCCRO method are either
comparable or better than the earlier best reported results. It has
been also observed that the RCCRO has the ability to converge to
quality solutions within very short span of time and possesses bet-
ter convergence characteristics compared to other optimization
techniques. Due to its promising performances, the RCCRO method
seems to be an important tool for solving several other complex
power system optimization problems.
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