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Abstract— This paper presents a teaching learning based algorithm (TLBO) to solve economic load 

dispatch (ELD) problems involving different linear, non-linear constraints. The problem formulation 

also considered the non-convex objective functions including the effect of valve-point loading, multi-

fuel option of large-scale thermal plants.Many difficulties such as multimodality, dimensionality and 

differentiability are associated with the optimization of large scale non-linear constraints based non-

convex economic load dispatch problems. TLBO is a population based technique which implements a 

group of solutions to proceed for the optimum solution. TLBO uses two different phases ‘Teacher 

Phase’ and ‘Learner Phase’. TLBO uses the mean value of the population to update the solution. 

Unlike other optimization techniques TLBO does not require any parameters to be tuned, thus making 

the implementation of TLBO simpler. TLBO uses the best solution of the iteration to change the 

existing solution in the population thereby increasing the convergence rate. Therefore, in the present 

paper Teaching–Learning-Based Optimization (TLBO) is applied to solve such type of complicated 

problems efficiently and effectively in order to achieve superior quality solution in computationally 

efficient way. Simulation results show that the proposed approach outperforms several existing 

optimization techniques. Results also proved the robustness of the proposed methodology.  

Keywords—Economic Load Dispatch, Prohibited operating zone, Ramp rate limits, Teaching-

Learning Optimization, Valve-point loading 

1. INTRODUCTION 

Economic Load Dispatch is the process of allocating generation among the available generating 

units, considering the most efficient, reliable and low cost operation of a power system provided load 

demand and other operational constraints are satisfied. Its main aim is to minimize the total cost of 

generations while satisfying the operational constraints of the available thermal power generation 

resources. Initially, the traditional techniques [1] have been applied to solve ELD problems. Linear 

programming method [2] is fast and reliable but it has also some drawback. Classical optimization 
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techniques are excellent for uni-modal and continuous functions. In case of these methods, the 

essential assumption is that, the incremental cost and emission curves of the generating units are 

monotonically increasing or piece-wise linear. A practical ELD problem sometimes considers effect of 

valve-point loading, Ramp-rate limits, Prohibited operating zones, multi-fuel options etc. into 

consideration. Due to all these practical effects the resulting ELD problems become totally non-

convex optimization problem. Therefore, in some cases these methods converge to locally optimal 

solution and not in global. Dynamic Programming (DP) approach was proposed by Wood and 

Wollenberg, [3] to solve ELD problems. It imposes no restrictions on the characteristics of the 

generating units. It suffers from the curse of dimensionality and also increases execution time with the 

increase of system size. 

Several attempts have been made to solve ELD problems using various soft computing techniques, 

such as genetic algorithm (GA) [4-5], particle swarm optimization (PSO) [6], An Colony Optimization 

(ACO) [7], evolutionary programming (EP) [8], simulated annealing (SA) [9], Differential Evolution 

(DE) [10], Artificial Immune System (AIS) [11], Bacterial Foraging Algorithm (BFA) [12], 

Biogeography-based Optimization (BBO) [13] etc. The above-mentioned techniques have been 

already proved very fast, reasonable nearly global optimal solution in solving nonlinear ELD problems 

without any restriction on the shape of the cost curves. Recently, different hybridization and 

modification of GA, EP, PSO, DE, BBO like improved GA with multiplier updating (IGA-MU) [14],  

hybrid genetic algorithm (GA)-pattern search (PS)-sequential quadratic programming (SQP) (GA-PS-

SQP) [15], improved fast evolutionary programming (IFEP) [16], new PSO with local random search 

(NPSO_LRS) [17], adaptive PSO (APSO) [18], self-organizing hierarchical PSO (SOH-PSO) [19], 

improved coordinated aggregation based PSO (ICA-PSO) [20], improved PSO [21], combined particle 

swarm optimization with real-valued mutation (CBPSO-RVM)[22], DE with generator of chaos 

sequences and sequential quadratic programming (DEC-SQP) [23], variable scaling hybrid differential 

evolution (VSHDE) [24],  hybrid differential evolution (DE) [25], bacterial foraging with Nelder–

Mead algorithm (BF-NM) [26], hybrid differential evolution with biogeography-based optimization 

(DE/BBO) [27] etc. have been adopted to solve different types of ELD problems. 
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Evolutionary algorithms, swarm intelligence, bacterial foraging all are population based bio-inspired 

algorithm. However, the common disadvantages of these algorithms are complicated computation, 

using many parameters. Therefore it is difficult to understand these algorithms for beginners. 

Moreover, all the nature-inspired algorithms such as GA, EP, PSO, ACO, DE, BFA, AIS, BBO etc. 

require tuning of algorithm parameters for their proper working. Proper selection of parameters is 

essential for the searching of the optimum solution by these algorithms. A change in the algorithm 

parameters changes the effectiveness of the algorithms. To avoid this difficulty an optimization 

method, Teaching–Learning-Based Optimization (TLBO), a parameter free algorithm, is implemented 

in this paper to solve complex ELD problems. 

Teaching–Learning-Based Optimization (TLBO) has been proposed by Rao et al. in the year 2011 

[28]. This method works on the effect of influence of a teacher on learners. Like other nature-inspired 

algorithms, TLBO is also a population based method which uses a population of solutions to proceed 

to the global solution. For TLBO, the population is considered as a group of learners or a class of 

learners. The process of working of TLBO is divided into two parts. The first part consists of ‘Teacher 

Phase’ and the second part consists of ‘Learner Phase’. The ‘Teacher Phase’ means learning from the 

teacher and the ‘Learner Phase’ means learning through the interaction between learners. The teacher 

is generally considered as a highly learned person who shares his or her knowledge with the learners. 

The quality of a teacher affects the outcome of learners. It is obvious that a good teacher trains 

learners such that they can have better results in terms of their marks or grades. Moreover, learners 

also learn from interaction between themselves, which also helps in their results. Like several other 

soft computing techniques, TLBO is also a population based technique which implements a group of 

solutions to proceed for the optimum solution. Many optimization methods require algorithm 

parameters that affect the performance of the algorithm. Unlike other optimization techniques TLBO 

does not require any algorithm parameters to be tuned, thus making the implementation of TLBO 

simpler. TLBO uses the best solution of the iteration to change the existing solution in the population 

thereby increasing the convergence rate. TLBO uses the mean value of the population to update the 

solution. Therefore, TLBO implements greediness to accept the good solution. It has been already 
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observed that the performance of TLBO is quite satisfactory when applied to solve continuous 

benchmark optimization problems [28].  

The improved performance of TLBO solve continuous benchmark optimization problems has 

motivated the present authors to implement this newly developed algorithm to solve different complex 

ELD problems. This paper considers four types of ELD problems, namely, (i) ELD with quadratic cost 

function, ramp rate limit, prohibited operating zone and transmission loss: - 15 Generators System, (ii) 

ELD with quadratic cost function without transmission loss: - 38 Generators System, (iii) ELD with 

Valve-Point Effects, ramp rate limit, prohibited operating zone: - 140 Generators System, (iv) ELD 

having Multiple Fuels and Valve-Point Effects: - 160 Generators System.  

Section 2 of the paper provides mathematical formulation of different types of ELD problems. 

Section 3 describes the proposed TLBO algorithm along with a short description of the algorithm used 

in these test systems. Simulation studies are presented and discussed in Section 4. The conclusion is 

drawn Section 5. 

2. MATHEMATICAL MODELING OF THE ELD PROBLEM 

The ELD may be formulated as both convex and non-convex nonlinear constrained optimization 

problem. Four different types of ELD problems have been formulated and solved by TLBO approach. 

These are presented below: 

2.1 ELD with quadratic cost function, ramp rate limit, prohibited operating zone and transmission 

loss 

The overall objective function FT of ELD problem may be written as 

   2
min min

1 1
i

N N
F F P a b P c Pi i i i i iT i i

   
 

                                                                                               (1)         

Where, Fi(Pi), is cost function of the i
th

 generator, and is usually expressed as a quadratic 

polynomial; N is the number of committed generators; ai, bi and ci are the cost coefficients of the i
th

 

generator; Pi is the power output of the i
th

 generator. The ELD problem consists in minimizing FT 

subject to following constraints: 
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1) Real Power balance constraint: 

 



N

i

LDi PPP
1

0                                                                                        (2) 

Where, PD is the total system active power demand; PL is the total transmission loss; Calculation of PL 

using the B- coefficients matrix is expressed as: 
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                                                                                       (3) 

2) The generating capacity constraint:  

The power must be generated by each generator within their lower limit min
iP  and upper limit max

iP . 

So that 

maxmin

iii PPP                                                                                                                           (4) 

Where min

iP  and max

iP are the minimum and the maximum power outputs of the i
th 

unit. 

3) Ramp Rate Limit Constraint:  

The power Pi generated by the i
th

 generator in certain interval neither should exceed that of previous 

interval Pio by more than a certain amount URi, the up-ramp limit and nor should it be less than that of 

the previous interval by more than some amount DRi, the down-ramp limit of the generator. These 

give rise to the following constraints: 

As generation increases 

iioi URPP                                                                                                                                        (5) 

As generation decreases 

iiio DRPP                                                                                                                                       (6) 

and 

   iiiiii URPPDRPP  0

max

0

min ,min,max                                                                                                          (7) 

4) Prohibited Operating Zone:  

Mathematically the feasible operating zones of unit can be described as follows: 

max

,

,1,

1,

min

,3,2;

ii

u

ni

i

l

jii

u

ji

l

iii

PPP

njPPP

PPP

i






 
                                                                                                                        (8) 
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Where j represents the number of prohibited operating zones of unit i. 
,

u

i jP  is the upper limit and l

jiP ,  is 

the lower limit of the j
th

 prohibited operating zone of i
th

 unit. Total number of prohibited operating 

zone of the i
th

 unit is nj. 

2.2 ELD with quadratic cost function  

In this type of ELD problem the overall objective function is same as mentioned in Equation 1. Here 

the objective function FT is to be minimized subject to the constraints of Equation 2, Equation 4. Here 

PL is zero. 

2.3 ELD with Valve-Point Effects, ramp rate limit, prohibited operating zone 

The fuel cost function FT in ELD problem with valve point loading changes the simple cost function 

Equation 1. It becomes more complex and is represented below: 

min2

1 1

( ( )) ( { ( )})
N N

i i i i i i i i i i iT

i i

F F P a b P c P e Sin f P P
 

                                                                                        (9) 

Where ei and fi are the coefficients of the i
th

 generator reflect the valve-point effects. The objective 

function Equation 9 is to be minimized of subject to the same set of constraints given in Equation 4, 

Equation 7 and Equation 8. 

2.4 ELD with non-smooth Cost Functions with Multiple Fuels and Valve-Point Effects: 

For a power system with N generators and nF fuel options for each unit, the cost function of the 

generator with valve-point loading is expressed as: 

min2

min max

( ) { ( )}

    ; 1, 2,......

i i ip ip i ip i ip ip ip ip

ip i ip F

F P a b P c P e Sin f P P

ifP P P for fuel option p p n

      

  
                                                                        (10)  

Where,
min

ipP and
max

ipP are the minimum and maximum power generation limits of i
th

 generator with 

fuel option p, respectively; , , ,ip ip ip ipa b c e and ipf are the fuel-cost coefficients of i
th

 generator for fuel 

option p. 

Considering N numbers of generators, the above-mentioned objective function is to be minimized 

subject to the constraints of Equation 2, Equation 4, without considering transmission loss. Therefore, 

PL term in Equation 2 becomes zero. 
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2.5 Calculation for slack generator 

Let N committed generating units deliver their power output subject to the power balance constraint 

Equation 2 and the respective capacity constraints of Equation 4 and/or Equation 7, Equation 8. 

Assuming the power loadings of first (N-1) generators are known, the power level of N
th

 generator 

(called Slack Generator) is given by 

5) Without Transmission Loss: 

( 1)

1

N

N D i

i

P P P




                                                                                                  (11) 

6) With Transmission Loss: 

( 1)

1

N

N D L i

i

P P P P




                                                                                     (12)  

Using Equation 3 and Equation 12, the modified form of equation is: 

1 1 1 1 1 1
2

1 1 1 1 1 1

2 1 0

N N N N N N

NN N N Ni i ON i ij j Oi i i OO

i i i j i i

B P P B P B PD PB P B P P B

     

     

  
          

   
   
    

                                     (13) 

The solution procedure of Equation 13 to calculate slack generator output, PN is same as mentioned 

in [19]. To avoid repetition it is not presented here. 

3. TEACHING LEARNING BASED ALGORITHM 

This section presents an interesting new optimization algorithm called teaching learning based 

optimization (TLBO) which has been recently proposed in [28]. The TLBO method works on the 

philosophy of the effect of manipulation of a teacher on the output of learners in a class and 

consequently learners also learn from interaction between themselves, which also helps in their grades. 

Therefore, the TLBO method works on the philosophy of teaching and learning. 

Consider two different teachers, T1 and T2, teaching a topic to the same merit level learners in two 

different classes. The distribution of marks obtained by the learners for this two varying classes 

evaluated by the teachers is illustrated in Fig. 1. Curves 1 and 2 represent the evaluated marks 

obtained by the learners taught by teacher T1 and T2 respectively. Normal distribution for the goal 

achieved by learners is defined as: 

 
 

2

1 2

2

x

f x e





 

 

                                                                                  (14) 

Figure 2 

Figure 1 
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where 
2

  is the variance,  is the mean and x is any value of which normal distribution function is 

required. Comparing the mean value of curve 1 and curve 2 of Fig. 1, it is seen that the learners from 

curve 2 get better results than the learners from curve-1. So it can be said that teacher T2 is better than 

teacher T1 in terms of teaching. Learners also learn from interaction between themselves, which 

promotes their results.  

Fig. 2 shows a model for the marks obtained by the learners in a class having mean MA in curve-A. 

It is obvious that teacher’s as the most intelligence person in the society, therefore the best learner is 

considered as the teacher here, and this is shown by TA in Fig.2. The teacher tries to spread the 

knowledge among the learners which in turn increase the knowledge level of the whole class and help 

learners to get good marks or grades. Teacher TA puts maximum effort into teaching his or her 

students and tries to move class mean from MA towards a new mean MB by means of increasing the 

learners’ knowledge level. At that stage the learners require a new teacher TB, of superior quality than 

themselves that is shown in curve-B.  

TLBO is also a population based algorithm whose population is described as a class of learners. In 

any nature-inspired based optimization algorithms, the population consists of different design 

variables. In TLBO, different design variables are the different subjects offered to learners and the 

learners’ outcome is corresponding to the ‘fitness function’. The teacher is considered as the best 

solution obtained so far. The process of TLBO is divided into two parts named ‘Teacher Phase’ and 

‘Learner Phase’. The ‘Teacher Phase’ means learning from the teacher and the ‘Learner Phase’ means 

learning through the interaction between learners. Two part of TLBO are described below. 

3.1 Teacher phase 

A good teacher always tries to improve the quality of learners in terms of knowledge i.e. a teacher 

tries to increase the mean value of the class from MA to MB as in fig. 2. But in real practice this is not 

possible and a teacher can only move the average quality of a class up to some limit depending on the 

quality of the class.  
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Let Mk be the mean and Tk be the teacher at any iteration k. Tk tries to move mean Mk towards its own 

level. The solution is updated according to the difference between the existing and the new mean. It is 

given by 

Xdiff = rand ()x(Tk – Rt Mk)                                                                 (15) 

where, rand() is a random number in the range [0,1]; the value of Rt can be either 1 or 2 which can be 

decided randomly with equal probability.                                         

This difference modifies the existing solution according to the following expression: 

Xnew = Xold + Xdiff                                                                              (16)   

3.2 Learner phase 

In learner phase, the Learners increase their knowledge in two different methods: first one through 

input from the teacher and the other through some interaction between themselves. A learner interacts 

with other randomly selected learners by the participation in formal communications, group 

discussions and presentations. By the interaction, a learner learns something new if the other learners 

have more knowledge than the corresponding learner [28]. In order to design the mathematical model, 

two learners Xi and Xj are randomly chosen, where i j. Objective functions for the learners Xi and Xj 

are evaluated. The achieved objective functions of Xi and Xj are compared. If the achieved objective 

function of Xi is less than the achieved objective function of Xj , then  

Xnew = Xold + rand ()x(Xi - Xj)                                                           (17) 

Otherwise 

   Xnew = Xold + rand ()x(Xj - Xi)                                                         (18) 

 If the new solution is better than the existed one then it is accepted. The pseudo codes and flow chart 

for all steps are available in [28].                

3.3 Sequential steps of TLBO algorithm 

There are two stages in TLBO: teacher phase and learner phase. All the steps are mentioned below: 

1) In initialization stage, read in the initial number of learners (PopSize) (equivalent to population size 

of many heuristic algorithms); maximum iteration number (Itermax). Specify no. of design variables 
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(D), in this case which is assigned as the number of subjects offered. Mention the lower and upper 

limits of design variables.  

2) Generate learner matrix (Xij) randomly according to the population size and the number of design 

variables and limits of the variables (where i = 1,2,…. PopSize, and j = 1,2,………D and total matrix 

size is ( PopSize D ).   

3) Determine objective function values for each learner set. Size of the objective function matrix is 

therefore ( 1PopSize ). The minimum value out of these objective function values is local optimum 

value and the corresponding value of  Xij is set as teacher (Xteacher). So Xteacher = Tk in Equation 15. 

4) Calculate the mean value of each design variable column wise. So the size of the mean value is (

1 D ). The mean value is used in Equation 15 as Mk. 

5) Modify each learner by Equation 15 and Equation 16. The value of Rt is randomly selected as 1 or 2. 

Calculate the objective function values for each modified learner. If the new value of the objective 

function of any learner is better than the previous one then accept new learner and replace the 

corresponding old one. Otherwise keep the old learner without any modification.  

6)  Learner phase: Learners increase their knowledge with the help of their mutual interaction. For each 

learner Xi (i=1,2,….D), arbitrarily choose any learner Xj from the learner matrix. Compare the 

objective function corresponding to Xi and Xj. If the value of the objective function of Xi is lower than 

the objective function value of Xj then modify the i
th

 learner using Equation 17 otherwise modify the 

i
th

 learner using Equation 18. 

7) If the maximum no. of iterations is reached or specified accuracy level is achieved, terminate the 

iterative process, otherwise go to step 3 for continuation.  

Interested readers may refer [28], which contains the detail steps of the TLBO Algorithm.     

3.4 TLBO algorithm for economic load dispatch problem 

In this subsection, the procedure to implement the TLBO algorithm for solving the ELD problems 

has been described. This algorithm is also used to deal with the equality and inequality constraints of 

the ELD problems. The sequential steps of the TLBO algorithm applied to solve ELD problem are:   

1. Representation of the learner Matrix X: Since the assessment variables for ELD problem are real 
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power output of the generators, they are together used to represent the individual learner. Each 

individual element of a learner is the subjects studied by the corresponding learner and it is same as 

the real power outputs of the generators, in ELD. For initializations choose the number of generator 

units m as a design variable (D) and the total number of learner structure is population size and is 

denoted as ‘PopSize’.  

The complete learner matrix is represented in the form of the following matrix: 

1 2 3[ , , ,........... ]   1,2,........,i PopSizeX X X X X X where i PopSize    

In case of ELD problem, each learner is presented as: 

1 2[ , , ] [.........
1 2

] [ , ,....... ];i j i i imX X X Xi imi i
Pg Pg Pg Pg     

Where, mj ,.......,2,1 . Each learner is one of the possible solutions for the ELD problem. The element 

Xij of Xi is the j
th

 position component of learner i. 

2. Initialization of the learner: Each individual element of the learner matrix (X), i.e., each element 

of a given learner is initialized randomly within the effective real power operating limits. The 

initialization is based on Equation 4 for generators without ramp rate limits, based on Equation 4, 

Equation 7 for generators with ramp rate limits and based on Equation 4, Equation 7, Equation 8 for 

generators with ramp rate limits, prohibited operating zone. 

3. Evaluation of objective functions: In case of ELD problems, objective function, of each learner is 

represented by the total fuel cost of generation for all the generators of that given learner. It is 

calculated using Equation 1 for the system having quadratic fuel cost characteristic; using Equation 9 

for the system having valve-point effect; using Equation 10 for the system having multi-fuel type fuel 

cost characteristic. 

Now the steps of algorithm to solve ELD problems are given below. 

Step 1) For initialization, choose no. of generator units, m i.e. no. of design variables (D); number of 

learner, PopSize. Specify maximum and minimum capacity of each generator, power demand, B-

coefficients matrix for calculation of transmission loss and other input data. Set maximum number of 

iterations, Itermax. 

Step 2) Each learner of X matrix should satisfy equality constraint of Equation 2 using the concept 
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of slack generator as mentioned in section 2.5. 

Step 3) Calculate the objective function value for each learner following the procedure mentioned in 

“Evaluation of objective functions”.  

Step 4) Based on the objective function values identify the elite learner and that is assigned as 

teacher of the learner matrix. Here, elite term is used to indicate that learner which gives best fuel cost. 

The elite learner is taken as Tk in Equation 15.  

Step 5) From the learner matrix (X), calculate the mean value of each design variable i.e. the mean 

value of individual generator’s power output column wise. The mean value is assigned as Mk in 

Equation 15.  

   Step 6) Modify each learner i.e. power output of the generators using Equation 15 and Equation 16. 

Verify the feasibility of each newly generated learner of the modified X matrix. Individual element of 

each modified learner must satisfy the generator operating limit constraint of Equation 4. If any 

element of a learner violate either upper or lower operating limits, then fix the values of those 

elements of the corresponding learner at the limit hit by them. Again satisfy constraint of Equation 2 

using the concept of slack generator as presented in section 2.5 (PL=0 in Equation 12 if loss is not 

considered). If output of slack generator does not meet generator operating limit constraint Equation 4 

or some generators do not satisfy the prohibited operating zone or ramp rate limit constraints, where 

applicable; reject that new learner, and reapply step 6 on its old, until all the constraints are satisfied. 

      Step 7) Calculate the values of the objective function of each modified learner of the learner 

matrix. If the new value of the objective function of any learner is better than the previous one then 

accept new learner and replace the corresponding old one. Otherwise keep the old learner without any 

modification.  

    Step 8) For each learner Xi (i=1,2,….D), arbitrarily choose any learner Xj from the learner matrix. 

Compare the objective function corresponding to Xi and Xj. If the value of the objective function of Xi 

is lower than the objective function value of Xj then modify the i
th

 learner using Equation 17 otherwise 

modify the i
th

 learner using Equation 18.  
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   Step 9) Individual element of each modified learner must satisfy their generator constraints. If any 

element of a modified learner violate either upper or lower operating limits, then fix the values of 

those elements of the corresponding learner at the limit hit by them. Again satisfy constraint of 

Equation 2 using the concept of slack generator as presented in section 2.5 (PL=0 in Equation 12 if 

loss is not considered). If output of slack generator does not meet generator operating limit constraint 

Equation 4 or some generators do not satisfy the prohibited operating zone or ramp rate limit 

constraints, where applicable; reject that modified learner, and reapply step 8 on its old, until all the 

constraints are satisfied. 

    Step 10) As individual learners of the learner matrix changes, consequently values of their objective 

function also changes.  Calculate the objective function of each newly generated learner. If the new 

value of objective function of a given learner is better than its previous value, then accept new learner 

and replace the corresponding old one. Otherwise keep the old learner without any modification. 

Step 11) If the maximum no. of iterations is reached or specified accuracy level is achieved, 

terminate the iterative process, otherwise go to step 4 for continuation. 

4. EXAMPLES AND SIMULATION RESULT 

Proposed TLBO algorithm has been applied to solve ELD problems in four different test cases and 

its performance has been compared to several other optimization techniques like GA [7], DE/BBO [7, 

27], and PSO [7, 21] etc. for verifying its feasibility. The necessary codes has been written in 

MATLAB-7 language and executed on a 2.0-GHz Intel Pentium (R) Dual Core personal computer 

with 1-GB RAM. 

4.1 Description of the Test Systems:- 

1) Test System 1: In this example, 15 generating units with ramp rate limit and prohibited zones 

constraints has been considered. Transmission loss has been included in the problem. Power demand is 

2630 MW and system data has been taken from [7]. Results obtained from proposed TLBO, PSO [7] 

and different versions of PSO [21] and other method have been presented here. Their best solutions 

are shown in Table 1. The convergence characteristic of the 15-generator systems in case of TLBO is 
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shown in Fig. 3. Minimum, average and maximum fuel costs obtained by TLBO and different versions 

of PSO [21], over 50 trials are presented in Table 2. 

2) Test System 2: A 38 generators system with quadratic fuel cost characteristic is used here. The 

input data are taken in [29]. The load demand is 6000 MW. Transmission loss has not been considered 

here. The result obtained using proposed TLBO method has been compared with BBO [27], DE/BBO 

[27], PSO-TVAC [27] and New-PSO [27]. Their best solutions are shown in Table 3. A convergence 

characteristic of the 38-generator systems in case of TLBO is shown in Fig.4. Minimum, average and 

maximum fuel costs obtained by TLBO over 50 trials are shown in Table 4. 

3) Test System 3: A 140 generators system having ramp rate limit, prohibited zones constraints are 

considered. Effect of valve-point loading has been incorporated within generator fuel cost 

characteristics of unit no. 5, 10, 15, 22, 33, 40, 52, 70, 72, 84, 119 and 121. The input data of this 

system are taken from [21]. The load demand is 49342 MW. The best results obtained by proposed 

TLBO is shown in Table 5. Out of 50 trials, minimum, maximum and average fuel cost obtained using 

TLBO algorithm, different versions of PSO [21] and Modified Teaching-Learning Algorithm (MTLA) 

[30] are shown in Table 6. Its convergence characteristic is presented in Fig. 5. 

4) Test System 4: A complex system with 160 thermal units is considered here. The input data are 

available in [31]. The system demand is 43200 MW. Transmission loss has not been included. The 

best result obtained using the proposed TLBO algorithm is shown in Table 7. Minimum, average and 

maximum fuel costs obtained by TLBO, ED-DE [31], and different GA [31] methods over 50 trials are 

presented in Table 8. Convergence characteristic of the 160-generator systems obtained by TLBO is 

shown in Fig. 6. 

 

4.2 Effect of Learner size for TLBO Algorithms:- 

Very large or small value of learner size may not be capable to get the minimum value of fuel cost. 

For each learner size of 20, 50, 100, 150 and 200, 50 trials has been run. Out of these, learner size of 

50 achieves best fuel cost of generations for this system. For other learner size, no significant 

improvement of fuel cost has been observed. Moreover, beyond learner size = 50, simulation time also 

Table 3-4 Figure 4 

Table 7-8 Figure 6 

Figure 5 Table 5-6 

Table 1-2 Figure 3 
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increases. Best output obtained by TLBO algorithm for each learner size is presented in Table 9. 

4.2.1 Comparative study 

1.  Solution Quality: Tables 1, 3, 5, and 7 present the best fuel cost obtained by TLBO for 4 different 

test systems. The minimum costs obtained for the 4 test system are better compared to the results 

obtained by many previously developed techniques are also shown in Tables 2, 4, 6, and 8. These 

tables also represent the comparative studies for maximum, minimum and average values, obtained by 

different algorithms. From the results it is clear that the performance of TLBO algorithm is better, in 

terms of quality of solutions compared to many already existing techniques.        

2. Computational Efficiency: In Tables 2, 4, 6 and 8, it is shown that time taken by TLBO to achieve 

minimum fuel costs, are quite less compared to that obtained by many other techniques. These results 

prove significantly better computational efficiency of TLBO.  

3. Robustness: Performance of any heuristic algorithms cannot be judged by a single run. Normally 

their performance is judged after running the programs for certain number of trials. Many numbers of 

trials should be made to obtain a useful conclusion about the performance of the algorithm. An 

algorithm is said to be robust, if it gives consistent result during these trial runs. Tables 2, 4, 6 and 8 

present that out of 50 numbers of trials for four different test systems; TLBO reaches to minimum 

costs 50, 50, 47 and 47 times respectively. The efficiency of TLBO algorithm to reach minimum 

solution is 100 % and 94 % respectively. This performance is much superior compared many other 

algorithms, presented in the different literatures.  

Therefore, the above results establish the enhanced ability of TLBO to achieve superior quality 

solutions, in a computationally efficient and robust way. 

5 CONCLUSION 

In the present paper, a newly developed TLBO algorithm has been successfully implemented in the 

field of power system to solve different convex and non-convex ELD problems. The simulation results 

show that the performance of TLBO is better compared to that of several previously developed 

optimization techniques. The TLBO has obtained superior quality solutions with high convergence 

speed in a much robust way. The results also show the advantage of TLBO compared to many 

Table 9 
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previously developed optimization techniques in term of computational time, as the proposed 

algorithm is parameter free.  Therefore, TLBO can be considered as one of the strong tool to solve 

complex ELD problems. Moreover, successful implementation and superior performance of TLBO to 

solve ELD problems has created a new path in the field of power system which may encourage the 

researcher to apply this newly developed algorithm to solve different much complex power system 

optimization problems like optimal power flow, hydro thermal scheduling, loss minimization, optimal 

placement of Distributed generators, FACTS devices etc. Therefore, it may finally be concluded that 

proposed TLBO algorithm is able to solve any complex constrained optimization problems with a 

faster convergence rate irrespective of the nature of the objective function.  
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Figure Captions 

 

Figure 1:-  Marks distribution by learners taught by T1 and T2 

Figure 2:-  Distribution of score for learners 

Figure 3:-  Convergence characteristic of 15-generators system obtained by TLBO 

Figure 4:-  Convergence characteristic of 38-generators system obtained by TLBO 

Figure 5:-  Convergence characteristic of 140-generators system, obtained by TLBO 

Figure 6:-  Convergence characteristic of 160-generator system, obtained by TLBO 
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Table Captions 

Table 1:-    Best Power Output For 15-Generators System (Pd=2630MW) 

Table 2:-   Comparison Between Different Methods Taken After 50 Trials (15-Generators   

System) 

Table 3:-    Best Power Output For 38-Generators System (PD=6000MW) 

Table 4:-  Comparison Maximum, Minimum and Average Value Taken After 50 Trials (38-

Generators System) 

Table 5:-    Best Power Output For 140-Generators System (PD=49342MW) 

Table 6:-   Comparison Between Different Methods Taken After 50 Trials (140-Generators 

System) 

Table 7:-    Best Power Output For 160-Generators System (PD=43200MW) 

Table8:-     Comparison between Different Methods Taken After 50 Trials (160-Generators 

System) 

Table 9:-    Effect of Population Size on 160-Generators System 
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Fig.3. Convergence characteristic of 15-generators system obtained by TLBO 

 
Fig.4. Convergence characteristic of 38-generators system obtained by TLBO 
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Fig.5. Convergence characteristic of 140-generators system, obtained by TLBO 

 
Fig.6. Convergence characteristic of 160-generator system, obtained by TLBO 

 

 

 

 

TABLE 1 

BEST POWER OUTPUT FOR 15-GENERATORS SYSTEM (PD=2630MW) 

Unit TLBO GA [7] PSO [7] CTPSO [21] CSPSO [21] COPSO [21] CCPSO [21] 

1 455.000000 415.3108 439.1162 455.0000 455.0000 455.0000 455.0000 

2 380.000000 359.7206 407.9727 380.0000 380.0000 380.0000 380.0000 

3 130.000000 104.4250 119.6324 130.0000 130.0000 130.0000 130.0000 

4 130.000000 74.9853 129.9925 130.0000 130.0000 130.0000 130.0000 

5 170.000000 380.2844 151.0681 170.0000 170.0000 170.0000 170.0000 

6 460.00000 426.7902 459.9978 460.0000 460.0000 460.0000 460.0000 

7 430.000000 341.3164 425.5601 430.0000 430.0000 430.0000 430.0000 

8 73.081166 124.7867 98.5699 71.7430 71.7408 71.7427 71.7526 

9 51.646599 133.1445 113.4936 58.9186 58.9207 58.9189 58.9090 

10 160.000000 89.2567 101.1142 160.0000 160.0000 160.0000 160.0000 
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11 80.000000 60.0572 33.9116 80.0000 80.0000 80.0000 80.0000 

12 80.000000 49.9998 79.9583 80.0000 80.0000 80.0000 80.0000 

13 26.577183 38.7713 25.0042 25.0000 25.0000 25.0000 25.0000 

14 17.150894 41.9425 41.4140 15.0000 15.0000 15.0000 15.0000 

15 16.033243 22.6445 35.6140 15.0000 15.0000 15.0000 15.0000 

Total 

(MW) 

2659.489085 2668.4 2662.4 2660.6615 2660.6615 2660.6615 2660.6616 

Loss 

(MW) 

29.489085 38.2782 32.4306 30.6615 30.6615 30.6615 30.6616 

Fuel 

Cost 

($/hr.) 

32697.215085 33113 32858 32704 32704 32704 32704 

 

TABLE 2 

COMPARISON BETWEEN DIFFERENT METHODS TAKEN AFTER 50 TRIALS  

(15-GENERATORS SYSTEM) 

Methods Generation Cost ($/hr.) Time/Iteration 

(Sec) 

No. of hits to 

minimum 

solution 
Max. Min. Average Standard 

Deviation 

TLBO 32697.215085 32697.215085 32697.215085 0.00 4.0 50 

CTPSO[21] 32704.4514 32704.4514 32704.4514 - 22.5 NA
*
 

     CSPSO[21] 32704.4514 32704.4514 32704.4514 - 16.1 NA 

COPSO[21] 32704.4514 32704.4514 32704.4514 - 85.1 NA 

CCPSO[21] 32704.4514 32704.4514 32704.4514 - 16.2 NA 

* NA:- Data Not Available 

TABLE 3 

BEST POWER OUTPUT FOR 38-GENERATORS SYSTEM (PD=6000MW) 

Output 

(MW) 

TLBO DE/BBO[27] BBO[27] PSO_TVAC[27] NEW_PSO[27] 

P1 425.891375 426.606060 422.230586 443.659 550.000 

P2 426.828618 426.606054 422.117933 342.956 512.263 

P3 430.318693 429.663164 435.779411 433.117 485.733 

P4 429.480487 429.663181 445.481950 500.00 391.083 

P5 429.996241 429.663193 428.475752 410.539 443.846 

P6 430.036039 429.663164 428.649254 492.864 358.398 

P7 429.142948 429.663185 428.119288 409.483 415.729 

P8 428.764849 429.663168 429.900663 446.079 320.816 

P9 114.000000 114.000000 115.904947 119.566 115.347 

P10 114.000000 114.000000 114.115368 137.274 204.422 

P11 119.373112 119.768032 115.418662 138.933 114.000 

P12 127.864848 127.072817 127.511404 155.401 249.197 

P13 110.000000 110.000000 110.000948 121.719 118.886 

P14 90.000000 90.0000000 90.0217671 90.924 102.802 

P15 82.000000 82.0000000 82.0000000 97.941 89.0390 

P16 120.000000 120.000000 120.038496 128.106 120.000 

P17 159.332636 159.598036 160.303835 189.108 156.562 
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P18 65.000000 65.0000000 65.0001141 65.0000 84.265 

P19 65.000000 65.0000000 65.0001370 65.0000 65.041 

P20 271.994045 272.000000 271.999591 267.422 151.104 

P21 271.999334 272.000000 271.872680 221.383 226.344 

P22 259.997110 260.000000 259.732054 130.804 209.298 

P23 130.995978 130.648618 125.993076 124.269 85.719 

P24 10.000001 10.0000000 10.4134771 11.535 10.000 

P25 113.306372 113.305034 109.417723 77.103 60.000 

P26 88.045293 88.0669159 89.3772664 55.018 90.489 

P27 37.532207 37.5051018 36.4110655 75.000 39.670 

P28 20.000000 20.0000000 20.0098880 21.628 20.000 

P29 20.000000 20.0000000 20.0089554 29.829 20.995 

P30 20.000000 20.0000000 20.0000000 20.326 22.810 

P31 20.000000 20.0000000 20.0000000 20.000 20.000 

P32 20.000000 20.0000000 20.0033959 21.840 20.416 

P33 25.000000 25.0000000 25.0066586 25.620 25.000 

P34 18.000000 18.0000000 18.0222107 24.261 21.319 

P35 8.000000 8.00000000 8.00004260 9.6670 9.1220 

P36 25.000000 25.0000000 25.0060660 25.000 25.184 

P37 21.907418 21.7820891 22.0005641 31.642 20.000 

P38 21.192396 21.0621792 20.6076309 29.935 25.104 

Fuel 

Cost($/hr.) 
9411938.5572307

333 

9417235.7863

91673 

9417633.637

6443729 

9500448.307 9516448.312 

 

TABLE 4 

COMPARISON MAXIMUM, MINIMUM AND AVERAGE VALUE TAKEN AFTER 50 TRIALS 

(38-GENERATORS SYSTEM) 

Methods Generation Cost ($/hr.) Time/Iteration 

(Sec) 

No. of hits to   

Min. solution Max. Min. Average Standard 

Deviation 

TLBO 9411938.55723073

33 

9411938.55723073

33 

9411938.55723073

33 

0.00 0.50 50 

 

TABLE 5 

BEST POWER OUTPUT FOR 140-GENERATORS SYSTEM (PD=49342MW) 

Unit Power Output(MW) Unit Power 

Output(MW) 

Unit Power Output(MW) 

P1 119.000000 P48 249.994057 P95 837.500000 

P2 163.992556 P49 249.946191 P96 682.000000 

P3 189.972341 P50 249.929215 P97 720.000000 

P4 189.998972 P51 165.209529 P98 718.000000 

P5 168.535362 P52 165.011169 P99 720.000000 

P6 189.997956 P53 165.016223 P100 964.000000 

P7 490.000000 P54 165.451209 P101 958.000000 

P8 490.000000 P55 180.017382 P102 947.900000 

P9 496.000000 P56 180.022796 P103 934.000000 

P10 496.000000 P57 103.221141 P104 935.000000 

P11 496.000000 P58 198.019702 P105 876.500000 
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P12 496.000000 P59 312.000000 P106 880.900000 

P13 506.000000 P60 310.335980 P107 873.700000 

P14 509.000000 P61 163.059478 P108 877.400000 

P15 506.000000 P62 95.011962 P109 871.700000 

P16 505.000000 P63 510.936198 P110 864.800000 

P17 506.000000 P64 510.798512 P111 882.000000 

P18 506.000000 P65 489.960051 P112 94.008366 

P19 505.000000 P66 255.973389 P113 94.008341 

P20 505.000000 P67 489.682262 P114 94.002109 

P21 505.000000 P68 490.000000 P115 244.043393 

P22 505.000000 P69 130.012045 P116 244.017301 

P23 505.000000 P70 339.411380 P117 244.021535 

P24 505.000000 P71 139.530668 P118 95.016467 

P25 537.000000 P72 388.321434 P119 95.012018 

P26 537.000000 P73 201.593238 P120 116.010750 

P27 549.000000 P74 175.736242 P121 175.016446 

P28 549.000000 P75 211.418208 P122 2.000193 

P29 501.000000 P76 274.267672 P123 4.001186 

P30 499.000000 P77 382.327348 P124 15.012599 

P31 506.000000 P78 330.234153 P125 9.010491 

P32 506.000000 P79 531.000000 P126 12.001651 

P33 506.000000 P80 531.000000 P127 10.001491 

P34 506.000000 P81 541.971416 P128 112.019297 

P35 500.000000 P82 56.003078 P129 4.004812 

P36 500.000000 P83 115.032582 P130 5.034679 

P37 241.000000 P84 115.003931 P131 5.001229 

P38 241.000000 P85 115.027600 P132 50.000415 

P39 774.000000 P86 207.012109 P133 5.001042 

P40 769.000000 P87 207.012532 P134 42.021338 

P41 3.014093 P88 175.000656 P135 42.002799 

P42 3.001595 P89 175.148390 P136 41.005287 

P43 250.000000 P90 182.053148 P137 17.004924 

P44 249.166734 P91 175.129746 P138 7.018298 

P45 250.000000 P92 575.400000 P139 7.001898 

P46 249.803132 P93 547.500000 P140 26.291702 

P47 249.981180 P94 836.800000 Cost ($/hr.):- 1657586.7157401750 

TABLE 6 

COMPARISON BETWEEN DIFFERENT METHODS TAKEN AFTER 50 TRIALS  

(140-GENERATORS SYSTEM) 

Methods Generation Cost ($/hr.) Time/Iteration 

(Sec) 

No. of hits to 

Min. Solution Max. Min. Average Standard 

Deviation 

TLBO 1657596.2512 1657586.7157 1657587.2878 2.2875 12.8 47 

CTPSO[21] 1658002.7900 1657962.7300   1657964.0600 - 100 NA 

CSPSO[21] 1657962.8500 1657962.7300   1657962.7400 - 99 NA 

COPSO[21] 1657962.7300 1657962.7300  1657962.7300 - 150 NA 

CCPSO[21] 1657962.7300 1657962.7300  1657962.7300 - 150 NA 

MTLA[30] 1657951.9053 1657951.9053 1657951.9053 - 2.28 NA 
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TABLE 7 

BEST POWER OUTPUT FOR 160-GENERATORS SYSTEM (PD=43200MW) 

Unit Power Output(MW) Unit  Power Output(MW) Unit Power Output(MW) 

P1 230.231072 P55 268.702738 P109 420.285071 

P2 210.446980 P56 235.502986 P110 274.018137 

P3 286.038870 P57 299.035088 P111 223.101446 

P4 242.966508 P58 243.769370 P112 211.644783 

P5 282.709600 P59 435.661539 P113 287.251212 

P6 241.572630 P60 275.710290 P114 237.024233 

P7 293.534605 P61 236.103212 P115 276.677853 

P8 241.844669 P62 211.015683 P116 242.713774 

P9 428.520764 P63 269.917872 P117 298.850305 

P10 273.970461 P64 240.104662 P118 240.329015 

P11 223.822498 P65 289.996904 P119 409.123323 

P12 213.659852 P66 247.063654 P120 268.489742 

P13 296.793002 P67 297.981577 P121 216.378669 

P14 243.099952 P68 235.432930 P122 223.185522 

P15 283.978652 P69 436.397367 P123 282.345249 

P16 241.597356 P70 273.077310 P124 244.262927 

P17 284.202003 P71 231.023042 P125 278.861687 

P18 243.441124 P72 211.442586 P126 242.752663 

P19 430.831438 P73 263.863789 P127 274.027211 

P20 283.002119 P74 245.211579 P128 240.527749 

P21 217.450883 P75 262.494238 P129 436.881594 

P22 213.075368 P76 237.375342 P130 275.124501 

P23 279.454877 P77 278.695112 P131 222.507071 

P24 238.652449 P78 243.530392 P132 210.184492 

P25 267.130395 P79 438.426795 P133 279.589430 

P26 238.526165 P80 270.445893 P134 232.842543 

P27 274.066249 P81 221.562195 P135 274.300277 

P28 242.075343 P82 210.474538 P136 235.855180 

P29 427.901473 P83 293.338588 P137 291.097887 

P30 264.284943 P84 241.945638 P138 236.748676 

P31 219.466474 P85 301.572104 P139 435.188836 

P32 209.112710 P86 241.132843 P140 258.139680 

P33 287.864658 P87 289.654387 P141 203.969339 

P34 241.574369 P88 234.692550 P142 208.977942 

P35 272.641652 P89 431.272142 P143 283.658807 

P36 234.826416 P90 273.957457 P144 238.575237 

P37 292.822639 P91 219.095369 P145 280.256373 

P38 237.978690 P92 214.723938 P146 241.034880 

P39 436.636667 P93 283.451750 P147 289.328078 

P40 265.432210 P94 245.506570 P148 241.582038 

P41 217.930519 P95 273.004206 P149 432.032684 

P42 222.583499 P96 236.794502 P150 273.777239 

P43 290.494600 P97 291.482917 P151 216.757453 

P44 233.438274 P98 235.155228 P152 225.888284 

P45 295.299022 P99 416.363970 P153 271.727563 

P46 237.854959 P100 255.410343 P154 234.249233 

P47 278.510221 P101 216.223183 P155 276.486019 
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P48 248.035703 P102 209.982441 P156 236.439473 

P49 424.865371 P103 256.746663 P157 281.837647 

P50 275.625373 P104 238.692105 P158 238.199988 

P51 211.497807 P105 276.972440 P159 438.866929 

P52 205.196578 P106 241.383638 P160 267.589374 

P53 284.858260 P107 270.763647 Cost ($/hr.) 10005.9944539382 

P54 236.131977 P108 239.556436 

 

TABLE 8 

COMPARISON BETWEEN DIFFERENT METHODS TAKEN AFTER 50 TRIALS  

(160-GENERATORS SYSTEM) 

Methods Generation Cost ($/hr.) Time/Iteration 

(Sec) 

No. of hits 

to Min. 

Solution 
Max. Min. Average Standard 

Deviation 

TLBO 10006.2821

0000 

10005.994453

9382 

10006.01170000 0.0690 48.216 47 

  ED-DE[31] NA 10012.68 NA - NA NA 

  CGA-MU[31] NA 10143.73 NA - NA NA 

  IGA-MU[31] NA 10042.47 NA - NA NA 

 

TABLE 9 

EFFECT OF LEARNER SIZE ON 160-GENERATORS SYSTEM 

Learner size No. of hits to 

Best Solution 

Simulation 

Time(Sec.) 

Max. Cost 

($/hr.) 

Min. Cost 

($/hr.) 

Average Cost 

($/hr.) 

20 23 47.765 10006.8320 10006.5210 10006.6890 

50 47 48.216 10006.2821 10005.9944 10006.0117 

100 20 53.233 10006.7609 10006.5274 10006.6675 

150 12 58.610 10006.9919 10006.5751 10006.8919 

200 10 64.702 10007.2527 10006.5962 10007.1214 

 


