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Abstract

The concepts of differentiability, convexity, generalized convexity and minimization of a fuzzy mapping are known in
the literature. The purpose of this present paper is to extend and generalize these concepts to fuzzy mappings of several
variables using Buckley–Feuring approach for fuzzy differentiation and derive Karush–Kuhn–Tucker condition for the
constrained fuzzy minimization problem.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of fuzzy differential calculus has been discussed by many researchers like Goetschel–Voxman
[8], Seikkala [12], Puri–Ralescu [11], Dubois–Prade [5,6], and Friedman–Ming–Kandel [7]. A comparison of
these various definitions has been discussed by Buckley–Feuring [3]. Goetschel–Voxman, Puri–Ralescu, and
Friedman–Ming–Kandel have used non-standard fuzzy subtraction to define derivative of a fuzzy mapping.
Buckley–Feuring [2,3] also have defined the derivative of a fuzzy mapping using left and right-hand functions
of its a-level sets and established sufficient conditions for the existence of fuzzy derivative. Existence of Buck-
ley–Feuring derivative implies the existence of above derivatives. Hence in this paper we accept the concept of
differentiability of fuzzy mapping due to Buckley–Feuring [2,3].

Nanda and Kar [10] introduced the concept convexity for fuzzy mapping and proved that a fuzzy mapping
is convex if and only if its epigraph is a convex set. Yan–Xu [16] have discussed convexity, quasiconvexity of
fuzzy mappings by considering the concept of ordering due to Goetschel–Voxman [8]. Syau in [13] has proved
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some results on convex fuzzy mapping and in [14], introduced the concept of differentiability, generalized con-
vexity such as pseudoconvexity and invexity for fuzzy mappings of several variables. His approach is parallel
to Goetschel–Voxman approach for fuzzy mapping of single variable in which the set of fuzzy numbers are
embedded in a topological vector space.

Nanda–Kar [10] have defined the concept of quasiconvex fuzzy mapping and have discussed some applica-
tions to optimization. However, since the set of fuzzy numbers is a partially ordered set, it might happen that
two fuzzy numbers may not be comparable (see Definition 3.10). Thus, in such case one is not sure what is the
maximum or minimum of two fuzzy numbers (that is, when they are not comparable). So to overcome this
difficulty, Syau [13] has taken a different approach and defined the supremum and infimum for a pair of fuzzy
numbers (see Lemma 2.6). Accordingly he modified the definition of a quasiconvex fuzzy mapping of Nanda–
Kar [10]. However, when we deal with the problem of minimization of a fuzzy mapping by considering the
infimum defined by Syau [13], we might get a unique infimum of the fuzzy mapping (provided it is bounded).
But in the process we might loose the solution, or in other words, there might not be any point (solution) (in
the domain) at which the fuzzy mapping will have the value equal to infimum (see Example 3.10). So to over-
come this difficulty we have modified the definition of quasiconvex fuzzy mapping in Section 4, which is dif-
ferent from Syau [13] as well as Nanda and Kar [10].

Section 3 deals with the minimization of a fuzzy mapping and also we introduce the gradient of a fuzzy
function, directional derivative of a fuzzy function and establish the condition for a local minimum of a fuzzy
differentiable function. The concept of convex fuzzy mapping, generalized convex fuzzy mapping such as quas-
iconvexity, strict quasiconvexity, strong quasiconvexity, pseudoconvexity using differentiability concept is
introduced in Section 4. Section 5 deals with the Karush–Kuhn–Tucker optimality conditions for the con-
strained fuzzy minimization problem.

2. Preliminaries

We first quote some preliminary notations, definitions and results which will be needed in the sequel.

Definition 2.1. Let R denote the set of all real numbers. A fuzzy number is a mapping ~u : R! ½0; 1� with the
following properties:

1. ~u is normal, that is, the core of ~u ¼ coreð~uÞ ¼ fx 2 R : ~uðxÞ ¼ 1g is not empty,
2. ~u is upper semi-continuous,
3. ~u is convex, that is,
~uðkxþ ð1� kyÞP minf~uðxÞ; ~uðyÞg

for all x; y 2 R; k 2 ½0; 1�;

4. the support of ~u, supp ~u ¼ fx 2 R : ~uðxÞ > 0g and its closure cl(supp ~u) is compact.

Let F be the set of all fuzzy numbers on R. The a-level set of a fuzzy number ~u 2F, 0 6 a 6 1, denoted by
~u½a�, is defined as
~u½a� ¼
fx 2 R : ~uðxÞP ag if 0 < a 6 1;

clðsupp~uÞ if a ¼ 0:

�

It is clear that the a-level set of a fuzzy number is a closed and bounded interval ½uHðaÞ; uHðaÞ�, where u�ðaÞ

denotes the left-hand end point of ~u½a� and u�ðaÞ denotes the right-hand endpoint of ~u½a�:
Also any m 2 R can be regarded as a fuzzy number ~m defined by
~mðtÞ ¼
1 if t ¼ m;

0 if t 6¼ m:

�

In particular, the fuzzy number ~0 is defined as ~0ðtÞ ¼ 1 if t ¼ 0, and ~0ðtÞ ¼ 0 otherwise.

Thus a fuzzy number ~u can be identified by a parameterized triples
fðu�ðaÞ; u�ðaÞ; aÞ : 0 6 a 6 1g:
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This leads to the following characterization of a fuzzy number in terms of the two ‘‘end point’’ functions u�ðaÞ
and u�ðaÞ.

Lemma 2.2 (Goetschel and Voxman ([8, Theorem 1.1])). Assume that I ¼ ½0; 1�, and u� : I ! R and u� : I ! R

satisfy the conditions:

1. u� : I ! R is a bounded increasing function,

2. u� : I ! R is a bounded decreasing function,

3. u�ð1Þ 6 u�ð1Þ,
4. for 0 < k 6 1; lima!k�u�ðaÞ ¼ u�ðkÞ and lima!k�u�ðaÞ ¼ u�ðkÞ,
5. lima!0þu�ðaÞ ¼ u�ð0Þ and lima!0þu�ðaÞ ¼ u�ð0Þ.

Then ~u : R! I defined by
~uðxÞ ¼ supfa : u�ðaÞ 6 x 6 u�ðaÞg

is a fuzzy number with parameterization given by fðu�ðaÞ; u�ðaÞ; aÞ : 0 6 a 6 1g: Moreover, if ~u : R! I is a fuzzy

number with parameterization given by fðu�ðaÞ; u�ðaÞ; aÞ : 0 6 a 6 1g, then functions u�ðaÞ and u�ðaÞ satisfy con-

ditions (1)–(5).

For ~u;~v 2F the fuzzy addition and scalar multiplication can be defined, respectively, as: for x 2 R,
ð~uþ ~vÞðxÞ ¼ sup
y2R
½minð~uðyÞ;~vðx� yÞÞ�;
and
ðk~uÞðxÞ ¼
~uðx=kÞ k > 0;
~0 k ¼ 0;

�

where ~0 2F. We accept the subtraction of fuzzy numbers as defined by Dubois and Prade [4].

For this, define the opposite of a fuzzy number ~u to be the fuzzy number �~u satisfying
ð�~uÞðxÞ ¼ ~uð�xÞ:

In other words, if ~u is represented by the parametric form
fðu�ðaÞ; u�ðaÞ; aÞ : 0 6 a 6 1g;

then �~u is represented by the corresponding parametric form
fð�u�ðaÞ;�u�ðaÞ; aÞ : 0 6 a 6 1g:

In this paper, if there is no confusion, we represent a fuzzy number ~u as hu�ðaÞ; u�ðaÞi instead of the triple
ðu�ðaÞ; u�ðaÞ; aÞ.

Definition 2.3 (Triangular fuzzy number). A fuzzy number ~a ¼ ha�ðaÞ; a�ðaÞi is said to be a triangular fuzzy
number if a�ð1Þ ¼ a�ð1Þ. Moreover, if a�ðaÞ and a�ðaÞ are linear then we say ~a a linear triangular fuzzy
number. We denote a linear triangular fuzzy number by ha�ð0Þ; a�ð1Þ; a�ð0Þi.

For example for the fuzzy number ~a ¼ h0; 1; 4i, we have ~a½a� ¼ ½a; 4� 3a� for a 2 ½0; 1�.

Definition 2.4. Let eA ¼ ð~a1; ~a2; . . . ; ~anÞ 2Fn and x ¼ ðx1; x2; . . . ; xnÞ 2 Rn be an n-dimensional fuzzy vector
and an n-dimensional real vector, respectively. We define the product of a fuzzy vector with a real vector aseAtx ¼

Pn
i¼1~aixi, which is a fuzzy number.
Definition 2.5. For ~u;~v 2F, we say that ~u ^ ~v if for each a 2 ½0; 1�, u�ðaÞ 6 v�ðaÞ; u�ðaÞ 6 v�ðaÞ. If ~u ^ ~v,
~v ^ ~u, then ~u ¼ ~v. We say that ~u � ~v, if ~u ^ ~v and 9 a0 2 ½0; 1� such that u�ða0Þ < v�ða0Þ or u�ða0Þ < v�ða0Þ.
For ~u;~v 2F, if either ~u ^ ~v or ~v ^ ~u, then we say that ~u and ~v are comparable, otherwise non-comparable.

Note that ^ is a partial order relation on F. Sometimes we may write ~v<~u instead of ~u ^ ~v.
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Lemma 2.6 (Yu–Ru Syau [13, Theorem 4.1]). Let ~u;~v 2F and u½a� ¼ ½u�ðaÞ; u�ðaÞ�, v½a� ¼ ½v�ðaÞ; v�ðaÞ� for

a 2 ½0; 1�. Denote by
maxfu�ðaÞ; v�ðaÞg ¼ w�ðaÞ; maxfu�ðaÞ; v�ðaÞg ¼ w�ðaÞ

for all a 2 ½0; 1�. Then the family of ½w�ðaÞ;w�ðaÞ� represents the a-level sets of a fuzzy number ~w 2F. Moreover
~w is the least upper bound(sup) of f~u;~vg. In a similar way infimum is also defined.

Definition 2.7 (Buckley–Feuring [3]). Let ~f , be a fuzzy mapping from the set of real numbers R to the set of
all fuzzy numbers, let ~f ðtÞ½a� ¼ ½f�ðt; aÞ; f �ðt; aÞ�. Assume that the partial derivatives of f�ðt; aÞ; f �ðt; aÞ with
respect to t 2 R for each a 2 ½0; 1� exist and are, respectively, denoted by f 0�ðt; aÞ; f �0ðt; aÞ. Let
Cðt; aÞ ¼ ½f 0�ðt; aÞ; f �0ðt; aÞ� for t 2 R; a 2 ½0; 1�. If Cðt; aÞ defines the a-cut of a fuzzy number for each t 2 R, then
~f ðtÞ is said to be differentiable and is written as d~f

dt ½a� ¼ Cðt; aÞ ¼ ½f 0�ðt; aÞ; f �0ðt; aÞ�, for all t 2 R; a 2 ½0; 1�.
3. Minimization of a fuzzy mapping

Definition 3.1. Let ~f : X � Rn !F be a fuzzy mapping. Consider the problem
Minimize ~f ðxÞ;
subject to x 2 X:
A point x 2 X is called a feasible solution. If x̂ 2 X and for no x 2 X, ~f ðxÞ � ~f ðx̂Þ, then x̂ is called an optimal
solution, a global optimal solution, or simply a solution to the problem. If x̂ 2 X and if there exists an �-neigh-
borhood N �ðx̂Þ around x̂ such that for no x 2 X \ N �ðx̂Þ, ~f ðxÞ � ~f ðx̂Þ, then x̂ is called a local optimal solution.
Similarly, if x̂ 2 X and if there exists an �-neighborhood N �ðx̂Þ around x̂ for some � > 0 such that for no
xð6¼ x̂Þ 2 X \ N �ðx̂Þ, ~f ðxÞ^ ~f ðx̂Þ, then x̂ is called a strict local optimal solution.

Throughout this paper we have accepted the fuzzy differentiability concept due to Buckley–Feuring [2,3].

Definition 3.2 (Fuzzy mapping). Let ~f : X!F be a fuzzy mapping, where X � Rn and F is the set of fuzzy
numbers. The a-cut of ~f at x 2 X, which is a closed and bounded interval can be denoted by
~f ðxÞ½a� ¼ ½f�ðx; aÞ; f �ðx; aÞ� where f�ðx; aÞ ¼ minf~f ðxÞ½a�g and f �ðx; aÞ ¼ maxf~f ðxÞ½a�g. Thus, ~f can be
understood by the two functions f�ðx; aÞ and f �ðx; aÞ, which are functions from X� ½0; 1� to the set of real
numbers R, f�ðx; aÞ is a bounded increasing function of a and f �ðx; aÞ is a bounded decreasing function of a.
Moreover, f�ðx; aÞ 6 f �ðx; aÞ for each a 2 ½0; 1�.
Definition 3.3 (Continuity of a fuzzy mapping). Let ~f : X � Rn !F be a fuzzy mapping. Then, ~f is said to be
continuous at x 2 X, if for each a 2 ½0; 1�, both f�ðx; aÞ; f �ðx; aÞ are continuous functions of x.

Definition 3.4 (Gradient of a fuzzy function). Let ~f : X!F be a fuzzy mapping, where X is an open subset of
Rn. Let x ¼ ðx1; x2; . . . ; xnÞ 2 X: Let Dxi , ði ¼ 1; 2; . . . ; nÞ stand for the ‘‘partial differentiation’’ with respect to
the ith variable xi. Assume that for all a 2 ½0; 1�, f�ðx; aÞ; f �ðx; aÞ have continuous partial derivatives so that
Dxi f�ðx; aÞ;Dxi f

�ðx; aÞ are continuous. Define
~Dxi
~f ðxÞ½a� ¼ ½Dxi f�ðx; aÞ;Dxi f

�ðx; aÞ� for i ¼ 1; 2; . . . ; n; a 2 ½0; 1�: ð1Þ

If for each i ¼ 1; 2; . . . ; n, (1) defines the a-cut of a fuzzy number, then we will say that ~f is differentiable at x,
and we write
~r~f ðxÞ ¼ ð~Dx1
~f ðxÞ; ~Dx2

~f ðxÞ; . . . ; ~Dxn
~f ðxÞÞ: ð2Þ
We call ~r~f ðxÞ, the gradient of the fuzzy function ~f at x. Thus, from Lemma 2.2, the sufficient conditions that
the gradient of ~f at x exists are

for each i ¼ 1; 2; . . . ; n, a 2 ½0; 1�,
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(i) the partial derivatives of f�ðx; aÞ and f �ðx; aÞ with respect to xi exist,
(ii) Dxi f�ðx; aÞ is a continuous increasing function of a,

(iii) Dxi f
�ðx; aÞ is a continuous decreasing function of a,

(iv) Dxi f�ðx; 1Þ 6 Dxi f
�ðx; 1Þ.

Note that ~r~f ðxÞ is an n-dimensional fuzzy vector.

A fuzzy mapping ~f is said to be differentiable at x if ~r~f ðxÞ exists and both f�ðx; aÞ; f �ðx; aÞ for each
a 2 ½0; 1� are differentiable at x.

Note: For the gradient of a fuzzy mapping we use the symbol ~r, whereas for the gradient of a real valued
function we use the symbol r.

Definition 3.5 (Directional derivative of a fuzzy function). Let ~f : X � Rn !F be a fuzzy mapping. For x 2 X,
let d 2 Rn such that xþ kd 2 X for k > 0 and sufficiently small. The directional derivative of ~f at x along the
vector d (if it exists) is a fuzzy number denoted by ~f 0ðx; dÞ and whose a-cut is defined as,
~f 0ðx; dÞ½a� ¼ ½f 0�ððx; dÞ; aÞ; f �0ððx; dÞ; aÞ�;

where f 0�ððx; dÞ; aÞ ¼ limk!0þ

f�ðxþkd;aÞ�f�ðx;aÞ
k and f �0ððx; dÞ; aÞ ¼ limk!0þ

f �ðxþkd;aÞ�f �ðx;aÞ
k .

In the following example, we illustrate the above two concepts.

Example 3.6. Let ~f : R2 !F be defined by
~f ðx1; x2Þ ¼ h0; 2; 4ix2
1 þ h0; 2; 4ix2

2 þ h1; 3; 5i;
~f ðx1; x2Þ½a� ¼ ½2a; 4� 2a�x2

1 þ ½2a; 4� 2a�x2
2 þ ½1þ 2a; 5� 2a�; a 2 ½0; 1�;
so we have, f�ðx1; x2; aÞ ¼ 2ax2
1 þ 2ax2

2 þ ð1þ 2aÞ and f �ðx1; x2; aÞ ¼ ð4� 2aÞx2
1 þ ð4� 2aÞx2

2 þ ð5� 2aÞ;
a 2 ½0; 1�.

1. Now Dx1
f�ðx1;x2;aÞ ¼ 4ax1;Dx1

f �ðx1;x2;aÞ ¼ 2ð4� 2aÞx1;Dx2
f�ðx1;x2;aÞ ¼ 4ax2;Dx2

f �ðx1;x2;aÞ ¼ 2ð4� 2aÞx2.

Thus, ~r~f ðxÞ ¼ ð~Dx1
~f ðxÞ; ~Dx2

~f ðxÞÞ, where ~Dx1
~f ðxÞ ¼ h4ax1;2ð4� 2aÞx1i; ~Dx2

~f ðxÞ ¼ h4ax2;2ð4� 2aÞx2i. Notice
that both ~Dx1

~f ðxÞ; ~Dx2
~f ðxÞ are fuzzy numbers for x1 P 0;x2 P 0. Thus, ~r~f ðxÞ exist in the first (non-negative)

quadrant of R2.
2. Let ðx1; x2Þ ¼ ð1; 2Þ; ðd1; d2Þ ¼ ð1; 1Þ. We find the directional derivative of ~f at ðx1; x2Þ along ðd1; d2Þ
f 0�ðððx1; x2Þ; ðd1; d2ÞÞ; aÞ ¼ f 0�ððð1; 2Þ; ð1; 1ÞÞ; aÞ;

¼ lim
k!0þ

2að1þ kÞ2 þ 2að2þ kÞ2 þ ð1þ 2aÞ � ½2aþ 8aþ 1þ 2a�
k

;

¼ lim
k!0þ
ð4akþ 12aÞ;

¼ 12a;

f �0ðððx1; x2Þ; ðd1; d2ÞÞ; aÞ ¼ f �0ððð1; 2Þ; ð1; 1ÞÞ; aÞ;

¼ lim
k!0þ

ð4� 2aÞð1þ kÞ2 þ ð4� 2aÞð2þ kÞ2 þ ð5� 2aÞ � ½ð4� 2aÞ þ 4ð4� 2aÞ þ 5� 2a�
k

;

¼ 24� 12a:
Thus ~f 0ððx1; x2Þ; ðd1; d2ÞÞ½a� ¼ ½12a; 24� 12a�.
Hence, the directional derivative of the above fuzzy function at (1, 2) in the direction (1, 1) exists and is a fuzzy
number whose a-level set is ½12a; 24� 12a�.

In this paper, we have tried to use the concept of minimum of a convex fuzzy mapping whose range is the
set of fuzzy numbers. Yu–Ru Syau [13] has defined maximum and minimum between two fuzzy numbers. Also
Nanda–Kar [10] (in Convex Fuzzy Mappings), and Wu [15] (in Saddle Point Optimality conditions in Fuzzy
Optimization Problems) have used a partial order relation in the set of fuzzy numbers to get the minimum
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value. But we see that in these approaches the minimum of a set of fuzzy numbers may not exist at a point in
the domain of the fuzzy mapping. For non-linear fuzzy optimization problem we need a point where the min-
imum of the fuzzy mapping exists. This type of difficulty arises due to the fact that the set of fuzzy numbers is
not totally ordered. This has forced us to define class of comparable and non-comparable fuzzy mapping.

Definition 3.7 (Comparable fuzzy function). Let ~f : X � Rn !F be a fuzzy mapping. Then, ~f is said to be a
comparable fuzzy function if for each pair x1 6¼ x2 2 X; ~f ðx1Þ and ~f ðx2Þ are comparable. Otherwise, ~f is said to
be a non-comparable fuzzy function. Let E denote the set of all comparable fuzzy functions.
Example 3.8. The function ~f defined in Example 3.6, that is,
~f ðx1; x2Þ ¼ h0; 2; 4ix2
1 þ h0; 2; 4ix2

2 þ h1; 3; 5i

is an example of a comparable fuzzy function.

Consider another example.

Example 3.9. Let ~f : X � R!F, where X is the set of all positive real numbers, be defined by
~f ðxÞ ¼ h0; 1; 2ix2 þ h1; 2; 3ixþ h1; 2; 4i;
~f ðxÞ½a� ¼ ½a; 2� a�x2 þ ½1þ a; 3� a�xþ ½1þ a; 4� 2a�; a 2 ½0; 1�:
If x 2 Rþ, then
f�ðx; aÞ ¼ ax2 þ ð1þ aÞxþ ð1þ aÞ

and
f �ðx; aÞ ¼ ð2� aÞx2 þ ð3� aÞxþ ð4� 2aÞ; a 2 ½0; 1�:

For x > y 2 Rþ, we have
f�ðx; aÞ � f�ðy; aÞ ¼ aðx2 � y2Þ þ ð1þ aÞðx� yÞ > 0; ð3Þ
f �ðx; aÞ � f �ðy; aÞ ¼ ð2� aÞðx2 � y2Þ þ ð3� aÞðx� yÞ > 0: ð4Þ
Thus, ~f ðyÞ � ~f ðxÞ. Hence, ~f is a comparable fuzzy function.

Below we have furnished an example of a fuzzy mappings for which Yu–Ru Syau [13] and other’s approach
to find a point of minimum fails. This fuzzy mapping is a non-comparable fuzzy mapping, hence all the points
are point of minimum.

Example 3.10. Consider the fuzzy mapping, ~h : X � R!F, where X is the set of all positive real numbers,
~hðxÞ ¼ h0; 1; 4ix2 � h0; 3; 4ixþ h1; 2; 4i:

The a-cut is given by
~hðxÞ½a� ¼ ½a; 4� 3a�x2 � ½3a; 4� a�xþ ½1þ a; 4� 2a�:

Hence,
h�ðx; aÞ ¼ ax2 � ð4� aÞxþ 1þ a
and
h�ðx; aÞ ¼ ð4� 3aÞx2 � 3axþ ð4� 2aÞ:

Now let x1; x2 2 R such that x1 > x2 > 0. Then
h�ðx1; aÞ � h�ðx2; aÞ ¼ aðx2
1 � x2

2Þ � ð4� aÞðx1 � x2Þ ¼ ðx1 � x2Þ½aðx1 þ x2Þ � ð4� aÞ�; ð5Þ
h�ðx1; aÞ � h�ðx2; aÞ ¼ ð4� 3aÞðx2

1 � x2
2Þ � 3aðx1 � x2Þ ¼ ðx1 � x2Þ½ð4� 3aÞðx1 þ x2Þ � 3a�: ð6Þ



M. Panigrahi et al. / European Journal of Operational Research 185 (2008) 47–62 53
To check whether ~h is comparable or not we have to check whether both (5) and (6) are simultaneously non-
positive or simultaneously non-negative. Now as a! 0, 4�a

a !1 and 3a
4�3a! 0. Therefore, if both (5) and (6)

non-negative then ðx1 þ x2Þ is infinite, and if (5) and (6) non-positive then ðx1 þ x2Þ becomes non-positive, this
contradicts that x1; x2 are finite positive real numbers. Hence, ~hðx1Þ and ~hðx2Þ are not comparable for all posi-
tive numbers x1 6¼ x2.

Let x1 ¼ 2; x2 ¼ 3. Then h�ð2; aÞ ¼ 7a� 7 and h�ð2; aÞ ¼ 20� 20a. h�ð3; aÞ ¼ 13a� 11 and h�ð3; aÞ ¼ 40�
38a. Thus, ~hð2Þ ¼ h�7; 0; 20i; ~hð3Þ ¼ h�11; 2; 40i: Clearly, ~hð2Þ and ~hð3Þ are not comparable. Hence, ~h is a
non-comparable fuzzy function.

−11 −7 2 20 400

1

A

B

CD

E

F

G

Let ~hð2Þ ¼ ~u(say) (the part ABC in figure) and ~hð3Þ ¼ ~v(say) (the part DEF in figure).
Let ~hð2Þ ¼ ~u(say) and ~hð3Þ ¼ ~v(say). Let us find the supremum and infimum between ~u and ~v according to

(Syau[13]) as follows:
~w ¼ supf~u;~vg ¼
[

a2½0;2=3�
½7a� 7; 40� 38a�

[
a2½2=3;1�

½13a� 11; 40� 38a�
and
~z ¼ inff~u;~vg ¼
[

a2½0;2=3�
½13a� 11; 20� 20a�

[
a2½2=3;1�

½7a� 7; 20� 20a�:
In the figure, AGEF represents the fuzzy number ~w and DGBC represents the fuzzy number ~z.
But there does not exist any x 2 X such that ~hðxÞ ¼ ~w or for that matter ~hðxÞ ¼ ~z.
Therefore, we will not consider the infimum (or supremum) in the minimization (or maximization) of a

fuzzy mapping according to Yu–Ru Syau. Rather we will consider the order relation defined by Nanda–Kar
[10], and Wu [15].

Remark 3.11. Since ^ is a partial order relation, minimum value of a non-comparable fuzzy function may not
be unique. Hence, a non-comparable fuzzy function has a set of minimal values. Therefore, application of
fuzzy differential calculus to find minimum of a fuzzy mapping may not be fruitful for a non-comparable fuzzy
function. Explicitly, we cannot put the necessary condition for the minimum of a non-comparable differentia-
ble fuzzy function as ~r~f ðxÞ ¼ ~0 which we can do for comparable fuzzy mappings (see Theorem 3.13). To over-
come this type of difficulties we consider the fuzzy functions which are comparable. Otherwise for arbitrary
fuzzy functions which are differentiable we may assume a point to be a point of minimum only if that is,
~r~f ðxÞ ¼ ~0� holds, where ~0� is a fuzzy number whose core is f0g. For example, for the fuzzy function ~h in
Example 3.10, ~r~hð3=2Þ ¼ h�4; 0; 12i:

Theorem 3.12. Let ~f : X � Rn !F, (~f 2 E and X an open set) be differentiable at x 2 X. If there is a vector

d 2 Rn satisfying rf�ðx; aÞtd < 0; or rf �ðx; aÞtd < 0; for at least one a 2 ½0; 1� implies there exists a d > 0 sat-

isfying ~f ðxþ kdÞ^ ~f ðxÞ for each k 2 ð0; dÞ; in that case we say that d is a descent direction of ~f at x.
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Proof. By the differentiability of ~f at x, we have f�ð:; aÞ and f �ð:; aÞ are also differentiable at x. Without loss of
generality assume that rf �ðx; a0Þtd < 0; for some a0 2 ½0; 1�. Then, by Theorem 4.1.2 (Bazaraa [1]) there exists
a d > 0 such that f �ðxþ kd; a0Þ < f �ðx; a0Þ for k 2 ð0; dÞ. Now since ~f 2 E, we have ~f ðxþ kdÞ^ ~f ðxÞ or
~f ðxÞ^ ~f ðxþ kdÞ. But since f �ðxþ kd; a0Þ < f �ðx; a0Þ, ~f ðxÞ^ ~f ðxþ kdÞ is not true. Thus, ~f ðxþ kdÞ �
~f ðxÞ: h

Here, we present the first-order condition for a local minimum of a fuzzy mapping.

Theorem 3.13. Let ~f 2 E be differentiable at x 2 X � Rn an open set. If x is a point of local minimum, then
~r~f ðxÞ ¼ ~0.

Proof. Suppose ~r~f ðxÞ 6¼ ~0. Then there exists a0 2 ½0; 1�, such that rf�ðx; a0Þ 6¼ 0 or rf �ðx; a0Þ 6¼ 0. With out
loss of generality suppose that rf�ðx; a0Þ 6¼ 0: Let d ¼ �rf�ðx; a0Þ. Then we get rf�ðx; a0Þtd ¼
�krf�ðx; a0Þk2

< 0. Now by Theorem 3.12, there exists a d > 0 such that ~f ðxþ kdÞ � ~f ðxÞ for k 2 ð0; dÞ,
which contradicts the assumption that x is a point of local minimum. Therefore, ~r~f ðxÞ ¼ ~0. h

Example 3.14. Consider the fuzzy mapping ~f in Example 3.6. ~r~f ðxÞ ¼ ~0) ~Dx1
~f ðxÞ ¼ ~0; ~Dx2

~f ðxÞ ¼ ~0)
x1 ¼ 0; x2 ¼ 0.

Thus, at ð0; 0Þ 2 R2, ~r~f ð0; 0Þ ¼ ~0 and it can be easily seen that ~f has minimum at ð0; 0Þ.

Definition 3.15 (Twice differentiable fuzzy function and Hessian of a fuzzy function). Let ~f : X!F be a fuzzy
mapping, where X is an open subset of Rn. Let x ¼ ðx1; x2; . . . ; xnÞ 2 X. Let Dxixj , ði; j ¼ 1; 2; . . . ; nÞ stand for the
‘‘second-order partial’’ with respect to the i-th variable xi and jth variable xj. Assume that ~r~f ðxÞ exists and for
all a 2 ½0; 1�, f�ðx; aÞ; f �ðx; aÞ have continuous second-order partial derivatives so that Dxixj f�ðx; aÞ; Dxixj f

�ðx; aÞ
are continuous (here Dxixj f�ðx; aÞ ¼ DxiðDxj f�ðx; aÞÞ ¼ DxjðDxi f�ðx; aÞÞ ¼ Dxjxi f�ðx; aÞ, Dxixj f

�ðx; aÞ ¼
DxiðDxj f

�ðx; aÞÞ ¼ DxjðDxi f
�ðx; aÞÞ ¼ Dxjxi f

�ðx; aÞ). Define
~Dxixj
~f ðxÞ½a� ¼ ½Dxixj f�ðx; aÞ;Dxixj f

�ðx; aÞ� for i; j ¼ 1; 2; . . . ; n; a 2 ½0; 1�: ð7Þ
If for each i; j ¼ 1; 2; . . . ; n, (7) defines the a-cut of a fuzzy number, then we define the Hessian of the fuzzy
function (in the matrix notation) as follows:
~r2~f ðxÞ ¼ ð~Dxixj
~f ðxÞÞi;j¼1;2;...;n: ð8Þ
We will say that ~f is twice differentiable at x, if the Hessian of the fuzzy function exists and both
f�ðx; aÞ; f �ðx; aÞ are twice differentiable at x. The sufficient conditions that the Hessian of the fuzzy mapping
~f at x exists are

for each i; j ¼ 1; 2; . . . ; n, a 2 ½0; 1�,

(i) ~r~f ðxÞ exists,
(ii) the second-order partial derivatives of f�ðx; aÞ and f �ðx; aÞ with respect to xi; xj exist,

(iii) Dxixj f�ðx; aÞ is a continuous increasing function of a,
(iv) Dxixj f

�ðx; aÞ is a continuous decreasing function of a,
(v) Dxixj f�ðx; 1Þ 6 Dxixj f

�ðx; 1Þ.
Definition 3.16 (Positive definite and positive semi-definite fuzzy matrix). Let eA ¼ ð~aijÞ be an n� n fuzzy matrix
in which the entries ~aij ði; j ¼ 1; 2; . . . ; nÞ are all fuzzy numbers. eA is said to be a positive definite fuzzy matrix if
for each a 2 ½0; 1�, the left hand and the right-hand a-level matrices ðða�ÞijðaÞÞ and ðða�ÞijðaÞÞ (where
~aij ¼ hða�ÞijðaÞ; ða�ÞijðaÞiÞ, are all positive definite. Similarly, eA is said to be a positive semi-definite fuzzy
matrix if for each a 2 ½0; 1�, the matrices ðða�ÞijðaÞÞ and ðða�ÞijðaÞÞ (where ~aij ¼ hða�ÞijðaÞ; ða�ÞijðaÞiÞ, are all
positive semi-definite.
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Example 3.17. Consider the fuzzy matrix eA ¼ ~a ~0
~0 ~a

� �
where ~a ¼ h0; 4; 8i ¼ h4a; 8� 4ai. We will show that

this matrix is a positive semi-definite fuzzy matrix but not positive definite fuzzy matrix. For this we consider

the a-level matrices
4a 0
0 4a

� �
and

8� 4a 0
0 8� 4a

� �
. It can be easily checked that both the above matrices

are positive semi-definite for all a 2 ½0; 1�. But for a ¼ 0, the first matrix is not positive definite. Hence, eA is a
positive semi-definite fuzzy matrix but not positive definite fuzzy matrix.

Theorem 3.18. Let ~f 2 E be twice differentiable at x 2 X an open set. If x is a point of local minimum, then
~r~f ðxÞ ¼ ~0 and ~r2~f ðxÞ is fuzzy positive semi-definite.

Proof. Consider an arbitrary direction d 2 Rn. Then, since ~f is twice differentiable at x, we have f�ð:; aÞ and
f �ð:; aÞ are twice differentiable at x for all a 2 ½0; 1�, and so by Taylor’s expansion of f�ð:; aÞ and f �ð	; aÞ at x,
we have
f�ðxþ kd; aÞ ¼ f�ðx; aÞ þ krf�ðx; aÞtd þ ð1=2Þk2dtr2f�ðx; aÞd þ k2kdk2hðx; kd; aÞ; ð9Þ
f �ðxþ kd; aÞ ¼ f �ðx; aÞ þ krf �ðx; aÞtd þ ð1=2Þk2dtr2f �ðx; aÞd þ k2kdk2hðx; kd; aÞ; ð10Þ
where hðx; kd; aÞ ! 0 as k! 0. Since x is a point of local minimum, by Theorem 3.13 we have ð ~r~f ðxÞ ¼ ~0,
that is, we have rf�ðx; aÞ ¼ 0 ¼ rf �ðx; aÞ for each a 2 ½0; 1�. Now by rearrangement of (9) and (10) and divid-
ing by k2 > 0 individually, we get
f�ðxþ kd; aÞ � f�ðx; aÞ
k2

¼ ð1=2Þdtr2f�ðx; aÞd þ kdk2hðx; kd; aÞ; ð11Þ

f �ðxþ kd; aÞ � f �ðx; aÞ
k2

¼ ð1=2Þdtr2f �ðx; aÞd þ kdk2hðx; kd; aÞ: ð12Þ
Since x is a point of local minimum, we have f�ðxþ kd; aÞP f�ðx; aÞ and f �ðxþ kd; aÞP f �ðx; aÞ for a 2 ½0; 1�
for k sufficiently small. Therefore, the right side of (11) and (12) are positive and by taking the limits as k! 0
the result follows. h

Example 3.19. For the fuzzy mapping ~f defined in Example 3.6, it can be easily calculated that ~r2~f ðxÞ exists

and is equal to
~a ~0
~0 ~a

� �
which is a positive semi-definite fuzzy matrix as seen in Example 3.17.

4. Convexity and generalized convexity of fuzzy mappings

Definition 4.1 (Convex fuzzy mapping). Let ~f : X � Rn !F be a fuzzy mapping, where X is a convex subset
of Rn. ~f is said to be convex on X, if for each a 2 ½0; 1� both f�ðx; aÞ; f �ðx; aÞ are convex on X, that is, for
0 6 k 6 1, x; y 2 X,
1. f�ðð1� kÞxþ ky; aÞ 6 ð1� kÞf�ðx; aÞ þ kf�ðy; aÞ and
2. f �ðð1� kÞxþ ky; aÞ 6 ð1� kÞf �ðx; aÞ þ kf �ðy; aÞ.
~f is said to be concave if �~f is convex.

Example 4.2. The fuzzy function ~f in Example 3.6 is convex on R2, and the fuzzy function ~h in Example 3.10 is
convex on X.

In the next two results, we discuss the necessary and sufficient conditions for a differentiable fuzzy mapping
to be convex.
Theorem 4.3. Let ~f be a fuzzy mapping on an open convex set X � Rn. Let ~f be differentiable at x0 2 X. If ~f is
convex on X, then for each x 2 X and a 2 ½0; 1�, we have
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f�ðx; aÞ � f�ðx0; aÞP rf�ðx0; aÞtðx� x0Þ; ð13Þ
f �ðx; aÞ � f �ðx0; aÞP rf �ðx0; aÞtðx� x0Þ: ð14Þ
Proof. Let ~f be convex at x0. Then, f�ðx; aÞ and f �ðx; aÞ are convex at x0 for each a 2 ½0; 1�. Therefore, by The-
orem 6.1.1 (Mangasarian [9]), we have the desired result. h

Theorem 4.4. Let ~f be a fuzzy mapping from an open set X � Rn to F. Let ~f be differentiable on X. Then, a

necessary and sufficient condition for ~f to be convex on X is that for each x; y 2 X and a 2 ½0; 1�, the following

two inequalities hold:
½rf�ðx; aÞ � rf�ðy; aÞ�tðx� yÞP 0; ð15Þ
½rf �ðx; aÞ � rf �ðy; aÞ�tðx� yÞP 0: ð16Þ
Proof. A real valued differentiable function g defined on an open convex set X is convex if and only if for each
x; y 2 X
½rgðxÞ � rgðyÞ�tðx� yÞP 0: ð17Þ

Since ~f is a differentiable convex function on X, so f�ðx; aÞ and f �ðx; aÞ are real valued differentiable convex
function on X for each a 2 ½0; 1�. Therefore, they satisfy (15) and (16), respectively.

Conversely, suppose f�ðx; aÞ and f �ðx; aÞ satisfy (15) and (16), respectively, for each x; y 2 X and a 2 ½0; 1�.
By assumption ~f is differentiable on X and hence f�ðx; aÞ; f �ðx; aÞ are differentiable function on X for each
a 2 ½0; 1�. Now following (17), both f�ðx; aÞ; f �ðx; aÞ are convex for each a 2 ½0; 1�. Hence, by definition ~f is
convex. h

The concept of directional derivative of a fuzzy mapping in a direction is important to find the optimal
solution of fuzzy nonlinear programming problem. The following theorem proves the existence of directional
derivative of a fuzzy mapping at a particular point.
Theorem 4.5. Let X be an open convex subset of Rn and let ~f : X!F be a convex fuzzy mapping. For x 2 X let

the a-cut of ~f at x be denoted by ~f ðxÞ½a� ¼ ½f�ðx; aÞ; f �ðx; aÞ�. Then, for d 6¼ 0 2 Rn, f�ððx; dÞ; aÞ and f �ððx; dÞ; aÞ
exist for each a 2 ½0; 1�. Moreover, if hf�ððx; dÞ; aÞ; f �ððx; dÞ; aÞi represents a fuzzy number then the directional
derivative of ~f at x in the direction d that is, ~f 0ðx; dÞ exists.

Proof. Since ~f is convex on X, we have f�ðx; aÞ; f �ðx; aÞ are convex functions on X for each a 2 ½0; 1�. There-
fore, f 0�ððx; dÞ; aÞ and f �0ððx; dÞ; aÞ exist for each a 2 ½0; 1�. Hence, the proof is complete. h

Theorem 4.6. Let ~f be a twice differentiable fuzzy mapping on an open convex set X � Rn to F. ~f is convex on X
if and only if for each x 2 X, ~r2~f ðxÞ is a positive semi-definite fuzzy matrix.

Proof. Necessity. Since ~f is twice differentiable on X, we have for each a 2 ½0; 1�, f�ð:; aÞ, and f �ð:; aÞ are twice
differentiable on X. Assume that ~f be convex on X, that is for each a 2 ½0; 1�, f�ð:; aÞ, and f �ð:; aÞ are convex on
X. Therefore, the Hessian matrices r2f�ðx; aÞ;r2f �ðx; aÞ for each x 2 X; a 2 ½0; 1� are all positive semi-definite
matrices. Since ~f is twice differentiable, r2f�ðx; aÞ;r2f �ðx; aÞ are nothing but the left hand and right-hand end
points of the a-cut of ~r2~f ðxÞ for each a 2 ½0; 1�. Thus, ~r2~f ðxÞ is a positive semi-definite fuzzy matrix.

Sufficiency. Since ~f is twice differentiable, ~r2~f ðxÞ exists for each x 2 X, moreover let ~r2~f ðxÞ be a positive
semi-definite fuzzy matrix. Then the left and right-hand a-level matrices of ~r2~f ðxÞ (that is,
r2f�ðx; aÞ;r2f �ðx; aÞ for each a 2 ½0; 1�, respectively), are all positive semi-definite matrices. As a result
f�ðx; aÞ and f �ðx; aÞ are all convex on X for each a 2 ½0; 1�. Hence by definition ~f is convex on X. h

Example 4.7. The fuzzy mapping ~f in Example 3.6, is a convex fuzzy mapping since ~r2~f ðxÞ is a positive semi-
definite fuzzy matrix.
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The concept of quasiconvex fuzzy mapping have been introduced by Nanda and Kar [10]. But the concept
for finding the maximum of two fuzzy numbers has not been discussed in their paper. It may happen that two
fuzzy numbers are not comparable. So we modify the definition of quasiconvex fuzzy mapping as follows:

Definition 4.8 (Quasiconvex fuzzy mapping). Let ~f : X � Rn !F be a fuzzy mapping. Let X be a non-empty
convex set in Rn. ~f is said to be quasiconvex if, for each x; y 2 X, the following inequality is true:
~f ½kxþ ð1� kÞy�^ maxf~f ðxÞ; ~f ðyÞg for each k 2 ð0; 1Þ; ð18Þ

whenever ~f ðxÞ and ~f ðyÞ are comparable.

The fuzzy mapping ~f is said to be quasiconcave if �~f is quasiconvex.

Definition 4.9 (Strictly quasiconvex fuzzy mapping). Let ~f : X � Rn !F be a fuzzy mapping. Let X be a non-
empty convex set in Rn. ~f is said to be strictly quasiconvex if, for each x; y 2 X with ~f ðxÞ 6¼ ~f ðyÞ, the following
inequality is true:
~f ½kxþ ð1� kÞy� � maxf~f ðxÞ; ~f ðyÞg for each k 2 ð0; 1Þ; ð19Þ

whenever ~f ðxÞ and ~f ðyÞ are comparable.

The fuzzy mapping ~f is said to be strictly quasiconcave if �~f is strictly quasiconvex.

Definition 4.10 (Strongly quasiconvex fuzzy mapping). Let ~f : X � Rn !F be a fuzzy mapping. Let X be a
non-empty convex set in Rn. ~f is said to be strongly quasiconvex if, for each x; y 2 X with x 6¼ y, the following
inequality is true:
~f ½kxþ ð1� kÞy� � maxf~f ðxÞ; ~f ðyÞg for each k 2 ð0; 1Þ; ð20Þ

whenever ~f ðxÞ and ~f ðyÞ are comparable.

The fuzzy mapping ~f is said to be strongly quasiconcave if �~f is strongly quasiconvex.
Here, it may be noted that every strictly quasiconvex fuzzy mapping may not be quasiconvex. We show it

by an example.

Example 4.11. Consider the fuzzy mapping ~f : R!F defined by
~f ðtÞ ¼
~b t ¼ 0;
~0 t 6¼ 0;

(

where ~b ¼ h1; 2; 3i. Then it can be easily checked that ~f is strictly quasiconvex.

However, ~f is not quasiconvex, since for t1 ¼ 1; t2 ¼ �1, we have ~f ðt1Þ ¼ ~f ðt2Þ ¼ ~0, but ~f 1
2
t1 þ 1

2
t2

� �
¼

~f ð0Þ ¼ ~b 
 maxf~f ðt1Þ; ~f ðt2Þg.
Nanda and Kar [10] have proved that for a strictly quasiconvex fuzzy mapping ~f defined on a convex subset

X in Rn, a local minimum is a global minimum. In the proof they used the concept of a local minimum as: Let x̂
be a point of local minimum of ~f in X means there exists a neighborhood N of x̂ in X such that ~f ðx̂Þ^ ~f ðxÞ for
all x 2 N . But in case of fuzzy mapping it might happen that there exists no neighborhood N of x̂ such that
~f ðx̂Þ^ ~f ðxÞ for all x 2 N (see Example 3.10). But still x̂ is a point of local minimum if for no
x 2 X \ N �ðx̂Þ, ~f ðxÞ � ~f ðx̂Þ for all x 2 N . Hence, we have modified the result in [10] as follows:

Theorem 4.12. Let ~f : X � Rn !F be a strictly quasiconvex fuzzy mapping, where X is a nonempty open

convex set in Rn. If x̂ is a local optimal solution, then there does not exist x0 2 X such that ~f ðx0Þ � ~f ðx̂Þ.

Proof. Suppose there exists x0 2 X such that ~f ðx0Þ � ~f ðx̂Þ. By the convexity of X, kx0 þ ð1� kÞx̂ 2 X for each
k 2 ð0; 1Þ. Since x̂ is a point of local minimum by assumption, then 9 no ~f ½kx0 þ ð1� kÞx̂� � ~f ðx̂Þ for each
k 2 ð0; dÞ and for some d 2 ð0; 1Þ: But because ~f is strictly quasiconvex and ~f ðx0Þ � ~f ðx̂Þ,
~f ½kx0 þ ð1� kÞx̂� � ~f ðx̂Þ for each k 2 ð0; 1Þ. This contradicts that x̂ is a local optimal point, and the proof is
complete. h
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Theorem 4.13. Let ~f : X � Rn !F be a strongly quasiconvex fuzzy mapping, where X is a nonempty open con-

vex set in Rn. If x̂ is a local optimal solution, then there exists no x0ð6¼ x̂Þ 2 X such that ~f ðx0Þ^ ~f ðx̂Þ. That is x̂ is

a unique global optimal solution with objective value ~f ðx̂Þ.

Proof. Since x̂ is a local optimal solution, there exists an �-neighborhood N �ðx̂Þ around x̂ such that for no
x 2 X \ N �ðx̂Þ, ~f ðxÞ � ~f ðx̂Þ. Contrary to the theorem, let 9x0 2 X with x0 6¼ x̂ and ~f ðx0Þ^ ~f ðx̂Þ. By strong
quasiconvexity, it follows that
~f ½kx0 þ ð1� kÞx̂� � maxf~f ðx0Þ; ~f ðx̂Þg ¼ ~f ðx̂Þ for each k 2 ð0; 1Þ:
But for k small enough, kx0 þ ð1� kÞx̂ 2 X \ N �ðx̂Þ, and thus the above inequality contradicts that x̂ is a local
optimal point. Hence, the proof is complete. h

Below we derive the necessary and sufficient condition for a differentiable fuzzy mapping to be quasiconvex.

Theorem 4.14. ~f : X � Rn !F be a differentiable fuzzy mapping, where X is a nonempty open convex set in Rn.
Let ~f 2 E. Then ~f is quasiconvex if and only if the following statement holds: If x1; x2 2 X and ~f ðx1Þ^ ~f ðx2Þ,
then ~r~f ðx2Þtðx1 � x2Þ^ ~0.
Proof. Let ~f be quasiconvex, and let x1; x2 2 X be such that ~f ðx1Þ^ ~f ðx2Þ. Since ~f is differentiable at x2, we
have f�ð:; aÞ and f �ð:; aÞ are differentiable at x2 for each a 2 ½0; 1�. Hence
f�ðkx1 þ ð1� kÞx2; aÞ � f�ðx2; aÞ ¼ krf�ðx2; aÞtðx1 � x2Þ þ kkx1 � x2kh�ðx2; kðx1 � x2Þ; aÞ; ð21Þ
f �ðkx1 þ ð1� kÞx2; aÞ � f �ðx2; aÞ ¼ krf �ðx2; aÞtðx1 � x2Þ þ kkx1 � x2kh�ðx2; kðx1 � x2Þ; aÞ; ð22Þ
where as k! 0; h�ðx2; kðx1 � x2Þ; aÞ ! 0; h�ðx2; kðx1 � x2Þ; aÞ ! 0.
By the quasiconvexity of ~f , and as ~f ðx1Þ^ ~f ðx2Þ, we have
~f ½kx1 þ ð1� kÞx� ^ maxf~f ðx1Þ; ~f ðx2Þg ¼ ~f ðx2Þ for each k 2 ð0; 1Þ ð23Þ
that is, for each a 2 ½0; 1�,

f�ðkx1 þ ð1� kÞx2; aÞ 6 f�ðx2; aÞ ð24Þ
and
f �ðkx1 þ ð1� kÞx2; aÞ 6 f �ðx2; aÞ: ð25Þ

Now (21), (22), (24) and (25) imply that
krf�ðx2; aÞtðx1 � x2Þ þ kkx1 � x2kh�ðx2; kðx1 � x2Þ; aÞ 6 0 ð26Þ

and
krf �ðx2; aÞtðx1 � x2Þ þ kkx1 � x2kh�ðx2; kðx1 � x2Þ; aÞ 6 0 ð27Þ

Dividing (26) and (27) by k and taking k! 0, we get
rf�ðx2; aÞtðx1 � x2Þ 6 0; ð28Þ
rf �ðx2; aÞtðx1 � x2Þ 6 0: ð29Þ
This is equivalent to
~r~f ðx2Þtðx1 � x2Þ 6 ~0: ð30Þ

Conversely, suppose that x1; x2 2 X and ~f ðx1Þ^ ~f ðx2Þ. We need to show that given part 1, for each a 2 ½0; 1�,
the inequalities (24) and (25) are true. Let
P ¼ fx : x ¼ kx1 þ ð1� kÞx2; k 2 ð0; 1Þ; ~f ðxÞ 
 ~f ðx2Þg:
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We show that P is empty. If not, then suppose that there exists an y 2 P . Let y ¼ kx1 þ ð1� kÞx2; for some
k 2 ð0; 1Þ and ~f ðyÞ 
 ~f ðx2Þ. So there exists a0 2 ½0; 1� such that either f�ðy; a0Þ > f�ðx2; a0Þ or
f �ðy; a0Þ > f�ðx2; a0Þ: Without loss of generality assume that f�ðy; a0Þ > f�ðx2; a0Þ. Now since ~f is differentiable,
f�ð:; aÞ is also differentiable and in particular f�ð:; a0Þ is differentiable and hence continuous. Therefore, there
exists a d 2 ð0; 1Þ such that
f�ðky þ ð1� kÞx2; a0Þ > f�ðx2; a0Þ 8k 2 ½d; 1� ð31Þ

and
f�ðy; a0Þ > f�ðdy þ ð1� dÞx2; a0Þ: ð32Þ

By (32) and the mean value theorem, we must have
0 < f�ðy; a0Þ � f�ðdy þ ð1� dÞx2; a0Þ ¼ ð1� dÞrf�ðw; a0Þtðy � x2Þ; ð33Þ

where w ¼ k0y þ ð1� k0Þx2 for some k0 2 ðd; 1Þ.

Since y ¼ kx1 þ ð1� kÞx2 and ð1� dÞ > 0, (33) gives
0 < rf�ðw; a0Þtðx1 � x2Þ: ð34Þ

From (31), we can obtain f�ðw; a0Þ > f�ðx2; a0Þ.

But since f�ðw; a0Þ > f�ðx2; a0Þ > f�ðx1; a0Þ and w is a convex combination of y and x2 and hence in the
convex combination of x1 and x2, say w ¼ k1x1 þ ð1� k1Þx2, where k1 2 ð0; 1Þ:

Now by the assumption of the theorem
~rðwÞtðx1 � wÞ 6 0) ð1� k1Þ ~rðwÞtðx1 � x2Þ 6 0 ð35Þ

and therefore, we must have
0 P rf�ðw; a0Þtðx1 � wÞ ¼ ð1� k1Þrf�ðw; a0Þtðx1 � x2Þ: ð36Þ

The inequality (36) is not compatible with (34).

Hence P is empty, and the proof is complete. h
Definition 4.15 (Pseudoconvex fuzzy mapping). Let ~f : X � Rn !F be a fuzzy mapping, where X is a non-
empty convex set in Rn and ~f differentiable on X. The mapping ~f is said to be pseudoconvex if for each
x1; x2 2 X with ~0 ^ r~f ðxÞtðy � xÞ we have ~f ðxÞ^ ~f ðyÞ. The fuzzy mapping ~f is said to be pseudoconcave
if �~f is pseudoconvex.

Theorem 4.16. Let ~f : X � Rn !F be a differentiable pseudoconvex fuzzy mapping, where X is a nonempty

open convex set in Rn. Then ~f is strictly quasiconvex.

Proof. By contradiction, suppose that 9x; y 2 X such that ~f ðxÞ 6¼ ~f ðyÞ, (~f ðxÞ and ~f ðyÞ are comparable) and
~f ðzÞ<maxf~f ðxÞ; ~f ðyÞg, where z ¼ kxþ ð1� kÞy for some k 2 ð0; 1Þ: Without loss of generality let
~f ðxÞ � ~f ðyÞ, so that
~f ðxÞ � ~f ðyÞ^ ~f ðzÞ: ð37Þ

Since ~f is pseudoconvex we have r~f ðzÞtðx� zÞ � ~0. Now since r~f ðzÞtðx� zÞ � ~0 and x� z ¼ � 1�k

k ðy � zÞ,
thus ~0 � r~f ðzÞtðy � zÞ, and by pseudoconvexity of ~f , we must have ~f ðzÞ^ ~f ðyÞ. From (37), we get
~f ðzÞ ¼ ~f ðyÞ.

Also, since ~0 � r~f ðzÞtðy � zÞ, 9 a point w ¼ kzþ ð1� kÞy with k 2 ð0; 1Þ such that
~f ðyÞ ¼ ~f ðzÞ � ~f ðwÞ: ð38Þ

Again by pseudoconvexity of ~f , we have r~f ðwÞtðy � wÞ � ~0. Similarly, r~f ðwÞtðz� wÞ � ~0. That is, we must
have
r~f ðwÞtðy � wÞ � ~0 and r~f ðwÞtðz� wÞ � ~0:
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Now as y � z ¼ k
1�k ðw� zÞ and hence the above two inequalities can not be satisfied together. This contradic-

tion shows that ~f is strictly quasiconvex. h

Theorem 4.17. Let ~f : X!F be a pseudoconvex fuzzy mapping, where X is a nonempty open convex set in Rn.

Let ~f 2 E. Then x 2 X is a point of global minimum if and only if ~r~f ðxÞ ¼ ~0.

Proof. If x is a point of global minimum then by Theorem 3.13 ~r~f ðxÞ ¼ ~0.
Conversely, suppose that ~r~f ðxÞ ¼ ~0. Then we have ~r~f ðxÞtðy � xÞ ¼ ~0 8y 2 X. Hence, by the pseudocon-

vexity of ~f , we have ~f ðxÞ^ ~f ðyÞ for all y 2 X. Hence, x is a point of global minimum.
Wu [15] has given saddle point optimality conditions in fuzzy optimization problem, Nanda and Kar [10]

have studied convex fuzzy mappings and some of its application to optimization, but differentiability concept
is not taken into consideration. Syau [14] have discussed differentiability and convex fuzzy mappings. But
constrained fuzzy optimization under differentiability has not been discussed in the literature so far. h
5. Constrained fuzzy minimization problems

Let X0 be an open set in Rn, and let ~f : X0 !F be a fuzzy mapping. Let ~g : X0 !Fm be an m-dimensional
fuzzy function.

A constrained fuzzy minimization problem is
Minimize ~f ðxÞ
subject to ~gðxÞ^ ~0;

x P 0;

ð39Þ
where x 2 Rn.
Here, ‘‘Minimize ~f ðxÞ’’ is as explained in Section 3, and for ~g ¼ ð~giÞ

m
i¼1, (39) means (~giðxÞ^ ~0 for each

i ¼ 1; . . . ;m).

5.1. The Kuhn–Tucker stationary point fuzzy problem (KTFP)

Let ~f and ~g respectively, be a fuzzy mapping and an m-dimensional fuzzy vector function, both defined on
X0.

Define the Lagrangian fuzzy function as
~Lðx; uÞ ¼ ~f ðxÞ þ ut~gðxÞ:

The Kuhn–Tucker stationary point fuzzy problem (KTFP) is to find x 2 X0; u 2 Rm if they exist, such that
~r~f ðxÞ þ ut ~r~gðxÞ ¼ ~0; ð40Þ
~gðxÞ^ ~0; ð41Þ
ut~gðxÞ ¼ ~0�; ð42Þ
u P 0: ð43Þ
Note that in (40) ~0 2F, in (41) ~0 2Fm and in (42) ~0� 2F is such that coreð ~0�Þ ¼ 0.
Also (40) is equivalent to
rf�ðx; aÞ þ utrg�ðx; aÞ ¼0; ð44Þ
rf �ðx; aÞ þ utrg�ðx; aÞ ¼0 ð45Þ
for each a 2 ½0; 1�.

Theorem 5.1 (Sufficient optimality criteria for the KTFP).
Let x̂ 2 X0 � Rn, let X0 be open, and let ~f and ~g be differentiable and convex at x̂. Let ~f 2 E and the Lagrangian

function ~Lðx; uÞ 2 E (a comparable function of x). If ðx̂; ûÞ is a solution of KTFP, then x̂ is a solution of FMP.
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Proof. Since ~f is convex and differentiable at x̂, we have both f�ðx; aÞ and f �ðx; aÞ are convex and differentiable
at x̂ for each a 2 ½0; 1�. Now for any x 2 X, a ¼ 1, we have by Theorem 4.3
f�ðx; 1Þ � f�ðx̂; 1ÞP rf�ðx̂; 1Þðx� x̂Þ;
¼ �ûtrg�ðx̂; 1Þðx� x̂Þ ðby ð44ÞÞ;
P ût½g�ðx̂; 1Þ � g�ðx; 1Þ� ðsince ~g is convexÞ;
¼ �ûtg�ðx; 1Þ ðby ð42ÞÞ;
P 0 ðu = 0 and g�ðx; 1Þ ¼ 0Þ:
Since ~f 2 E, we conclude that x̂ is a solution to FMP. h

The following example justify Theorem 5.1.

Example 5.2
Min ~f ðx; yÞ ¼ ~ax2 þ ~by2

subject to ~hðx; yÞ ¼ ~cðx� 2Þ2 þ ~dðy � 2Þ2 5 ~k;

x > 0; y > 0;

ð46Þ
where ~a ¼ h0; 2; 4i; ~b ¼ h0; 2; 4i; ~c ¼ h0; 2; 4i; ~d ¼ h0; 2; 4i; ~k ¼ h0; 2; 4i.
Note that (46) is equivalent to:
2aðx� 2Þ2 þ 2aðy � 2Þ2 6 2a; ð47Þ
ð4� 2aÞðx� 2Þ2 þ ð4� 2aÞðy � 2Þ2 6 4� 2a ð48Þ
for each a 2 ½0; 1�. That is same as
2aðx� 2Þ2 þ 2aðy � 2Þ2 � 2a 6 0; ð49Þ
ð4� 2aÞðx� 2Þ2 þ ð4� 2aÞðy � 2Þ2 � ð4� 2aÞ 6 0 ð50Þ
for each a 2 ½0; 1�.
Now consider the function ~g ¼ hg�ðx; aÞ; g�ðx; aÞi where
g�ðx; aÞ ¼ 2aðx� 2Þ2 þ 2aðy � 2Þ2 � 2a and

g�ðx; aÞ ¼ ð4� 2aÞðx� 2Þ2 þ ð4� 2aÞðy � 2Þ2 � ð4� 2aÞ:
It is easy to see that ~g is a fuzzy mapping.
Now let ~Lððx; yÞ; uÞ ¼ ~f ðx; yÞ þ ut~gðx; yÞ; then
L�ððx; yÞ; u; aÞ ¼ 2ax2 þ 2ay2 þ u½2aðx� 2Þ2 þ 2aðy � 2Þ2 � 2a�;
L�ððx; yÞ; u; aÞ ¼ ð4� 2aÞx2 þ ð4� 2aÞy2 þ uð4� 2aÞ½ðx� 2Þ2 þ ðy � 2Þ2 � 1�;
rðx;yÞL�ððx; yÞ; u; aÞ ¼ ð4axþ 4uaðx� 2Þ; 4ay þ 4uaðy � 2ÞÞ;
rðx;yÞL�ððx; yÞ; u; aÞ ¼ ð2ð4� 2aÞxþ 2uð4� 2aÞðx� 2Þ; 2ð4� 2aÞy þ 2uð4� 2aÞðy � 2ÞÞ:
Now we have to solve
rðx;yÞL�ððx; yÞ; u; aÞ ¼ 0 ¼ rðx;yÞL�ððx; yÞ; u; aÞ; ð51Þ
~gðx; yÞ^ ~0; ð52Þ
u~gðx; yÞ ¼ ~0; ð53Þ
u P 0: ð54Þ
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That is to solve
4axþ 4uaðx� 2Þ ¼ 0 ¼ 4ay þ 4uaðy � 2Þ; ð55Þ
2ð4� 2aÞxþ 2uð4� 2aÞðx� 2Þ ¼ 0 ¼ 2ð4� 2aÞy þ 2uð4� 2aÞðy � 2Þ; ð56Þ
2aðx� 2Þ2 þ 2aðy � 2Þ2 � 2a 6 0; ð57Þ
ð4� 2aÞðx� 2Þ2 þ ð4� 2aÞðy � 2Þ2 � ð4� 2aÞ 6 0; ð58Þ
u½2aðx� 2Þ2 þ 2aðy � 2Þ2 � 2a� ¼ 0; ð59Þ
u½ð4� 2aÞðx� 2Þ2 þ ð4� 2aÞðy � 2Þ2 � ð4� 2aÞ� ¼ 0; ð60Þ
u P 0: ð61Þ
Solving (55)–(61), we get x ¼ 2u=ðuþ 1Þ ¼ y and u ¼ 2
ffiffiffi
2
p
� 1. Thus, x ¼ 2� 1ffiffi

2
p ¼ y.

Thus, the minimum value of the problem is found to be ~að2� 1ffiffi
2
p Þ2 þ ~b 2� 1ffiffi

2
p

� 	2

.

6. Conclusion

The concept of convex fuzzy mappings without differentiability has been discussed in the literature by many
researchers. The objective of this paper is to introduce the concept of convex fuzzy mappings and generalized
convex fuzzy mappings under differentiability. Using this concept the sufficient optimality condition for con-
strained fuzzy minimization problem has been derived in Section 5. However, different types of necessary and
sufficient optimality conditions such as Fritz John constraint qualification and Slater’s constraint qualification
for fuzzy nonlinear optimization problem can be derived in a similar way which is the future research scope of
this paper. Also other types of generalized convexity such as invexity and bonvexity for fuzzy mappings with
differentiability can be defined in a similar way.
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