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Abstract

This study presents a novel approach to predict a complete source to destination trajectory of a vehicle using a partial
trajectory query. The proposed architecture is scalable to extremely large-scale data with respect to the dense road
network. A deep learning model Long Short Term Memory (LSTM) has been used for analyzing the temporal data and
predicting the complete trajectory. To handle a large amount of data, clustering of similar trajectory data is used that
helps in reducing the search space. The clusters based on geographical locations and temporal values are used for training
different LSTM models. The proposed approach is compared with the other published work on the parameters as Average
distance error and one step prediction accuracy The one-step prediction accuracy is as good as 81% and Distance error
are .33 Km. Our proposed approach termed Clustered LSTM is outperforming in both the parameters when compared
with other reported results. The proposed solution is a clustering-based predictive model that effectively contributes
to accurately handle the large scale data. The outcome of this study leads to improvise the navigation systems, route

prediction, traffic management, and location-based recommendation systems.

Keywords Long-term trajectory prediction - Recurrent neural Network - Large-scale trajectory data - Real-time

prediction

1 Introduction

Technologies such as Sensors, the Global Positioning Sys-
tem (GPS), and the Internet of Things (loT), has resulted in
an abundant amount of mobility data. These data are gen-
erated and shared by businesses, public administrations,
non-profit organizations, scientific research institutes, etc.
They want to capture and analyze this data to make bet-
ter decisions for future actions. The improved data mining
methods are important to efficiently process and facilitate
better decisions using this huge volume of data. As a con-
sequence of churning a large volume of data, Mobility
Data Analytics, or Trajectory Prediction, has become an

active ongoing research avenue [5, 10, 32]. These research
outcome will lead to improved navigation [20], route pre-
diction [28], traffic sensing [14] and location-based rec-
ommendations [3]. These types of analysis will be helpful
for smart city projects to develop, deploy, and promote
sustainable development practices to address growing
urbanization challenges.One of the major urbanization
challenges is mobility, and recommendations while navi-
gation is an essential service in large cities. Use of mobility
data for trajectory prediction will help arrive at an optimal
framework for this type of application requirement.

If a person moves across the same roads a repeated
number of times, his inference capabilities enable him/
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her to make smart decisions and plan the trajectory that
would be shorter and better. This analogy is used for the
trajectory prediction of the moving body. The process of
predicting the path of the moving vehicles based on the
available vehicle mobility data is termed as Trajectory
Prediction (TP). Recently, several studies have been car-
ried out on trajectory prediction using machine learning
techniques [1, 29, 34] that can categorize into two types.
The first type is the short-term trajectory prediction model,
which predicts the route only up to a few locations and
considers only a short history for prediction. These types
of studies are applicable to small cities where the road
networks are small compared to large cities. The second
type is the long term trajectory prediction models.Long
term Trajectory prediction models predicts more number
of intermediate locations and hence requires more similer
data for training. In large cities, these trajectories usually
follow a complex road network making their mobility data
ambiguous. In these cases, long term predictions are more
useful and effective as cost and time of travel has a higher
multiplicative factor.

Itis a challenging task to carry out trajectory prediction
from a large amount of trajectory data using conventional
computing algorithms. The Machine Learning algorithms
for Trajectory Prediction are experimented with a small
set of data and have shown results. These algorithms also
failed to show similar results in real-life large-scale trajec-
tory data. It is because the complexity level increases at
a much higher rate with increasing number of intersect-
ing and overlapping trajectory scenario. There are some
implementations based on the Markov model and other
traditional pattern recognition algorithms such as cluster-
ing-based algorithms that rely only on the initial 2 or 3 GPS
points and cannot predict long term trajectories very effi-
ciently. Some of the modern practices are using Recurrent
Neural Network (RNN) [7, 22]. Its hidden layer can very well
store long-term dependencies between points. However,
these systems tend to be sensitive to small changes in the
future scope.

There are applications [31] that shows that the RNN and
Long short term memory (LSTM) have performed better
on the time series data. However, as the training data
increases, the architecture of these models becomes more
and more complex. Training these models in a reasona-
ble time demands special and expensive hardware. Also,
the data set as a whole has a lot of patterns and makes
it difficult for any singular model to learn with this high
variance data. Hence, to keep up with both the volume
and complexity of the data for long-distance trajectories,
we propose a robust approach that is scalable in terms of
size and scalable. The scenario of the overlapping road is
typical in major cities around the world. It is quite intuitive
that the path taken by any vehicle will be more regulated/
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motivated by the moving pattern of that vehicle in the
same area in comparison to a different one. Hence, we first
apply the clustering technique on the large trajectory data
considering time and location. Then, corresponding RNN
models are constructed and trained on the trajectories of
the same cluster to learn the movement patterns within
that cluster. Such clustering of data is especially beneficial
for complex models such as LSTMs. Clustering will result
in improved performance, as one big problem is divided
into several smaller problems. Each model has the task of
learning moving patterns of smaller areas. All these mod-
els are combined to solve the bigger and complex prob-
lems. Dividing the problem to sub-problem is to tackle the
time and space complexity of the deep learning model in
a big data environment [8, 23].

1.1 Contribution

This paper proposes a predictive model where a clustering
technique is applied before LSTM to address the scaling
issue and to capture the local phenomenon in the data.
This way the large volume of data is grouped into smaller
clusters making the LSTM training manageable without
high-end resources. This helps to achieve the following
research objectives

1. To overcome the issues of scalability, data are geo-
graphically clustered before applying multiple LSTM
models to predict the trajectory.

2. A comparative analysis of the proposed approach
(geographically cluster-LSTM) with the other two con-
ventional approaches LSTM and cluster—HMM.

1.2 Organization

This paper is organized into eight sections. Section 2 pre-
sents the related research work in the area of machine
learning-based data modeling for location-based Tra-
jectory prediction. Section 3 is the problem formulation
where the notations used in the paper are defined and the
relationship of various entities is represented. Section 4
gives a glimpse of the entire architecture and the proposed
approach framework. Section 5 represents the Methodol-
ogy, tools, and concepts applied to achieve the proposed
outcome. This section is consists of a stepwise algorithm
to explain the overall methodology. Section 6 describes
the steps followed for conducting the experimentation
including data pre-processing. Section 7 includes results
and discussion of the experimental analysis done for the
proposed research work. Section 8 presents the conclu-
sions drawn and future directions identified.
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2 Related work

A considerable amount of work has been done in recent
years on trajectory prediction, also termed as destination
prediction or trajectory querying. Here, we briefly discuss
the work done for effective trajectory prediction involving
pattern recognition or machine learning frameworks. Also,
Table 1 shows a summarization of the related work done
in the area of Trajectory Prediction. We mainly categorize
the discussion of related works into 3 categories: symbolic
rule based approaches, machine learning approaches and
deep learning approaches.

2.1 Symbolic rule based approaches

Initial methods for trajectory prediction involved scripting
the symbolic rules to determine the movement patterns
from the trajectories. Next location is predicted through
association rules employed to infer from the observed pat-
terns in the movement. Morzy et al. [19] used a hybrid of
the Prefix Span algorithm and frequency pattern tree as
an association rule to predict the trajectories. Similarly,
Monreale et al. [18] programmed a T-pattern Tree that
accounted for the frequency of the trajectory patterns for
predicting the next location. The issue, with this method,
is, it is computationally expensive to identify such frequent
trajectory patterns. Sometimes, the future location pre-
diction is also done by estimating the motion characteris-
tics through custom-programmed functions that use the
recent movements of the object [18]. However, since the
approaches mentioned in [18] are reported to be quite
inaccurate for long distance predictions, they are only
recommended for short-distance trajectory predictions.

2.2 Machine learning based approaches

Later, the problems faced by using symbolic approaches
were identified, and to overcome the same the research
works corroborate widespread adoption of machine
learning and data mining techniques in trajectory predic-
tion. The simplest clustering methods employ a singular
training algorithm such as k-means, C-SCAN with some
modifications to fit on the trajectory data [25, 35] or else,
parameters such as vehicle frequencies in terms of flux can
also be considered [12]. To make such approaches helpful
in terms of accuracy, they are often combined with predic-
tion algorithms such as Markov Models (MM). Such meth-
ods tend to perform well on the small-scale, artificial data
sets but when tested on real, large-scale trajectory data
yield poor results [2, 4].

Other approaches involve prediction based on the
semantic score where the semantic score is evaluated

through the extraction of geographical and other seman-
tic features from the user trajectories [38]. However, the
analysis suggests that the computation of semantic score
causes computational overhead. A spatiotemporal predic-
tion technique proposed in [16] forms the cluster of the
trajectories based on entropy and then use Hidden Markov
Models (HMM) for prediction.

Other than being used as part of hybrid algorithms,
HMMs have also been widely adopted by the research-
ers as an independent algorithm for trajectory prediction.
Often, the map is considered as a grid, where each cell
represents the specified location and HMMs are used to
predict transition probability from one cell to next [13].
Also, the conventional framework involving HMM to pre-
dict the best location is sometimes extended to instead
predict top-k locations [9]. This significantly boosts the
prediction accuracy. However, as the number of locations
to be predicted increases, the computational complexity
in terms of both space and time begins to rise.

2.3 Deep learning based approaches

Most forms of MMs failed to generalize discontinuous
trajectory data [24]. Moreover, since the MMs are known
to employ Viterbi algorithm for finding the hidden state
sequence and Baum-Welch algorithm for parameter
learning, they introduce a significant computational bur-
den when used on large-scale trajectory data. Due to the
recent success of complex networks such as Recurrent
Neural Networks (RNN) and Long Short Term Memory
(LSTM) networks in sequence prediction, the researchers
have started to replace HMMs with these architectures for
trajectory prediction tasks as well. They are known to be
scalable for large-scale data. Recently, a deep learning-
based human mobility prediction framework was pro-
posed by Wang et al. [33] using a LSTM network. It was
trained on the user’s historical trajectories. Then, the basic
model of LSTM was extended to be a multi-user, region
oriented framework by incorporating the sequence-to-
sequence modeling. The results had shown a significantly
reduced error rate accompanied by highly improved gen-
eralization abilities. In [26], RNN was used for predicting
the exact coordinates of the next destination based on the
taxi driver’s behavior. The RNN was trained on a sequence
of pick-up and drop-off points to predict future drop-
off points. The framework was evaluated on the ECML/
PKDD Discovery Challenge 2015 dataset. Initial bench-
marking performance on the same dataset was reported
by Brébisson et al. [6] using multi-layered perceptrons.
Other alternative approaches such as recurrent neural net-
works, bidirectional recurrent neural networks, and other
memory networks were also developed. Overall however,
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(continued)

Table 1

Pros Cons

Methodology

Objective

Year

Approach

Such heavy architectures only tend

It was capable of learning traffic-

An architecture titled ST-MetaNet

2019 A deep-meta-learning model-

Urban traffic, Spatio-temporal

related embedding of nodes to perform well on the small or

and edges from geo-graph

was employed as a sequence-
to-sequence architecture,
consisting of an encoder to

based approach to collectively

data, Neural network, Meta-

learning [21].

medium-sized dataset and not on

the large-scale data.

predict traffic in all locations at

once.

attributes and modeling both
spatial and temporal correla-

tions.

learn historical information and
a decoder to make predictions

step by step.
The methodology involves repre-

Efficiently predicting destinations The computational time for

Trajectory Prediction, Probabilistic 2017 To address the long-term

learning the RNN model linearly

using a stochastic-ally sampling
simulation based on the RNN
encoder-decoder framework.

senting trajectories as discred-

dependencies and data sparsity

problem in predicting the

destination.

Approach, Recurrent Neural

Network [7].

increases with the number of grid
cells and making it difficult to

ited features in a grid space and
feeds sequences of them to the

target a huge area with fine grids.

RNN model, which estimates the
transition probabilities in the

next timestamp.

Semantic information is implicitly

A Deep Multi-View Spatial-Tempo- The approach was scalable on a

Improve the demand prediction

2018

demand prediction, deep neural

modeled in this approach instead
of modeling explicit information
such as Point-of-Interest etc.

ral Network (DMVST-Net) frame-  large scale taxi demand dataset.

work was proposed consisting

by modeling both spatial and

network, multi-view [36].

temporal relations simultane-

ously.

of three views: temporal view,

spatial view, and semantic view.

Bidirectional RNNs with the window had given the best
accuracy on the custom test set.

Further, Pan et al. [21] addressed two main issues in pre-
dicting traffic. First, complexity in both spatial and tem-
poral correlations found in urban traffic by using a deep
meta-learning based approach to predict traffic. And sec-
ond, issue of the diversity and variation present in such
Spatio-temporal correlations by incorporating sequence to
sequence modeling in the developed ST-MetaNet model.

Yao et al. [36] proposed a composite two neural net-
work model Convolutional Neural Network (CNN) and
LSTM to model both spatial and temporal relations simul-
taneously in predicting taxi demand in Guangzhou, China.
These prior developed approaches are oriented around
either predicting short-distance trajectory using the large-
scale data or long-distance prediction for up to medium-
sized data.

3 Problem formulation

This section represents the notations used in the paper
for the entities like trajectory, clusters, partial trajectory.
Initially, G is the data set of randomized trajectories rep-
resented as eq. 1.

G={T,,T,, T35 ..., Ty} (1

where G is a set comprising of the total trajectories T, span-
ning the region’s network i.e. N, for a given period of time.

Definition 1 Trajectory is the sequence of the location
coordinate tuples followed by a vehicle during a trip. Each
trajectory T may have different length /. The trajectory T
can be defined as a set whose elements are time-ordered
sequences of coordinates as shown in equation 2,c

T={C,G,G,....¢} (2)

C, is the starting coordinate termed as source, and last
coordinate is the final location termed as destination of
the trajectory. All coordinates in between, C;, represents
the intermediate location where the vehicle travelled
through.

Definition 2 Clusters The entire set of trajectories G is
divided into clusters. Each trajectory is associated to some
clusters. S;is the jth cluster, T,’ represents the ith trajectory
associated to the jth cluster.

T /)
S =115 ... T} (3)
The above equation 3 represents the schema of each clus-

ter. There are M trajectories present in the cluster. When
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these clusters are combined, they result into a complete
trajectory seti.e (equation 4).

S=1{5,,5,55....5) @)

Definition 3 Partial Trajectory 7, is defined as part of the
complete trajectory. Every thing else is same except C; may
not necessarily be the source and C; may not necessarily
be the destination equation 5).

T,={C, GG, ..., G} (5)

where C; denotes coordinates indexed at specific instant
i. To mention, the partial trajectory T, has all of the char-
acteristics identical to trajectory T but that it is partial in
nature and is not complete.

Definition 4 Statement If a set of historical trajectories
isgivenasG = {T,T,, T;, ..., Ty} then, for queried partial
trajectory T, = {C;, (,, G5, ..., G } the goal is to predict the
next location C; ;.

4 Proposed approach

This section briefly presents the proposed work for pre-
dicting the next location in the trajectories. We consider
the scenario of major cities, where there is a large area of
the road network which increases the trajectory data and
also leads various options for the taxis. Sometimes these
taxis follow unusual paths. So, to mine the routing pattern
of the moving objects, we propose to cluster the historical
trajectories and thereby segregate the data into several
groups based on the similarities between the trajectories.
Further, for quickly clustering the trajectories through
Nearest Prototype Rule (NPR), we introduce cluster head
as Representative Trajectories (RT) for each cluster. The
clustering algorithm partitions all of the trajectories into
a different cluster based on the paths followed and the
distance between these trajectories. After clustering, a
deep learning architecture named LSTM shall be trained
separately for each cluster using only the trajectories of
that cluster. The LSTM model performs the task of predict-
ing the future location given the partial trajectory, which
results in improved performance for prediction of long-
term trajectory.

The entire pipeline for our trajectory prediction model
is described hereby a concise way. Figure 1 presents the
streaming of the data in our model. The model shall record
the data that is collected at the secondary storage from
the local storage through the streaming process. Here we
use the Big Data Environment as the distributed storage
environment because the size of the real-world data can
easily outgrow the storage space available in the single
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system. Initially, as the data is streamed into a distributed
environment and stored across various nodes. Then, all of
the trajectory data shall be grouped using our hybrid clus-
tering approach and the RT is generated as a cluster head
for each of the clusters.

The geographical grouping using KNN based cluster-
ing technique is performed as the pre-processing task on
the trajectory data. A corresponding LSTM architecture is
developed separately for each of the clusters on the front-
end and trained with the member trajectories as input.
Once the LSTM architectures are trained for different clus-
ters, all their parameters are saved in the system. Now,
whenever a partial trajectory is queried in real-time and its
future location is required to be predicted, it is first parsed
through an NPR (Nearest Prototype Rule) classifier. The role
of the NPR classifier in the prediction model is to evaluate
which cluster’s RT showcases the highest SimilarValue with
the queried trajectory and thereby feed the trajectory as
an input to the LSTM model of that cluster. As the LSTM
model predicts the next location, the queried trajectory is
updated by the addition of the new predicted location and
iterative inputted to an NPR classifier for prediction. In this
way, the process is repeated until the end of the trajectory.

5 Methodology

This section describes the methodology used to achieve
the proposed objectives in this paper. It is explained in two
phases- training followed by prediction.

5.1 Training

The training processes is divided into two parts, clustering
the trajectory data based on the geographical locations
and then training the model on the clustered data.

5.1.1 Clustering the data

The first step of our training algorithm is to group the
entire set of trajectory data into appropriate clusters based
on similarities between the trajectories of a specific area
during a specific time interval. For this, we use a modifica-
tion of the k-nearest neighbor algorithm by considering
the trajectories instead of points. Note that for our algo-
rithm in this paper, by mentioning the term nearest, we
mean the trajectory that is in the highest similarity with
another trajectory. We start by considering a trajectory and
the value k indicating the number of nearest neighbors
(in this case nearest trajectories) to be grouped. Thus, the
total of (k + 1) trajectories shall be grouped into each of
the clusters. This means that each cluster, during the start
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Fig. 1 Schematic diagram of
the proposed approach
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shall be having approximately k+1 trajectories. Thus, the
number of clusters M can be determined as

_ Total no. of trajectories (N)
- k+1)

(6)

Now, once the number of clusters to be formed is known
i.e. M, we proceed further to form those M clusters. For this,
we first determine the M most distinguished trajectories
from the entire dataset. We use the Maximin Random Sam-
pling (MMRS) algorithm described in [11] is used to find
such trajectories. It ensures that that the selected set of
trajectories has maximum separability and not more than
one trajectory is selected from the same route. Upon ini-
tially performing MMRS algorithm on the entire trajectory
data, arbitrary no. of trajectories, let us say M’ are selected
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from each of the routes. Therefore, M trajectories out of a
total of M’ trajectories are selected having the maximum
separability in terms of distance measure. These M trajec-
tories form the base trajectories of their respective cluster.

Once the base trajectories are formed, k trajectories
are to be selected for each of the base trajectories such
that they are nearest and in the highest similarity with the
base trajectory of the corresponding cluster. Now, as men-
tioned earlier, we use the concept of the kNN algorithm
with some modifications to cluster the trajectories. Here,
the amount of proximity or similarity can not be measured
in quite the same way as in the original kNN algorithm.
The reason being that kNN usually uses Euclidean Distance
as a metric to calculate the nearness of the two points,
which cannot be seen as a suitable metric for measuring
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nearness in trajectories. Hence, we measure the Hausdorff
Distance between the trajectories and take the k trajec-
tories having the least Hausdorff Distance measure with
the base trajectories of the corresponding clusters. For any
two trajectories represented by A and B, their Hausdorff
distance can be calculated as,

H(A, B) = max(h(A, B), h(B, A)) (7)

h(A, B) ranks each co-ordinate of A based on its nearest
point of B.

h(A,B) = max min [la - bl @)

Thus, with the selection of M base trajectories correspond-
ing to each of the clusters, the algorithm can be said to be
partially completed.

5.1.2 Nearest prototype rule

Still, there shall be plenty of trajectories in the dataset that
weren't assigned to any of the M clusters as kNN would
only group k+1 trajectories into a single cluster. The Near-
est Prototype Rule (NPR) is implemented to cluster such
non-sampled trajectories. For the efficient and accurate
implementation of NPR, the Representative Trajectory
(RT) is required to be computed. Such trajectories are
interpreted as the best possible representation of the tra-
jectories of that cluster. It can be thought to be analogous
to the centroid in the polygon except that to compute the
centroid of clusters of trajectories requires more intricate
and composite methods. There are a bunch of methods
proposed to compute the representative trajectory of the
cluster computing the mean trajectory using the mean of
the GPS coordinates of all trajectories for each timestamp
[11, 30]. However, there are a couple of problems in imple-
menting this method. First, merely computing a trajectory
by a statistical mean of all trajectories in the cluster does
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not always mean that there shall be a real pathway on the
roadmap through which the trajectory can be routed. Sec-
ond, the trajectories are all of the different lengths, and
therefore, computing the mean would introduce bias as all
the trajectories shall not be able to participate in average
estimation at all time-stamps. Next, it is also proposed to
sample a random trajectory from the cluster and denote
it as an RT. It is not usually recommended, as sometimes
a huge deviation is observed between the random trajec-
tory selection and the actual best RT. Therefore, we choose
the approach presented in [15, 37] to nominate a trajec-
tory that has minimum dissimilarity among the trajecto-
ries of the same cluster. For every trajectory T;, we esti-
mate the SimilarValue metric that quantifies the similarity
between that trajectory and the rest of the trajectories in
that cluster.

N o e
Zj=1 Similarity(T;, T))
N

9)

Similar Value(T;) =

After the SimilarValue is computed for each trajectory, the
trajectory with the highest SimilarValue is assumed to be
the representative trajectory.

Now that the RT is computed for each cluster, we pro-
ceed to accommodate the most distinguished and unusual
trajectories that were not classified in the initial attempt,
into appropriate clusters through Nearest Prototype Rule
(NPR). In this, we again employ the algorithm used for
computing the RT, but this time with one to one map-
ping. This means that we compute the SimilarValue metric
for the unassigned trajectory with the RT of each cluster.
Then, the cluster whose RT has the highest SimilarValue
with the trajectory is assigned the trajectory of that clus-
ter. The same process is repeated for all the unclustered
trajectories. The procedure is represented by the name
NPRClassifier in Fig. 1 and Algorithm 24.
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5.1.3 Training the architecture

Algorithm 1: Training

Input : Initial set of randomized trajectory data-G = {71, T5, T3,
Ty, ..., Ty}, number of nearest (similar) trajectories w.r.t.
each of base trajectories to be grouped into a single
cluster—k.

Output: The LSTM-RNN model trained on the M cluster segregated
data.

1 Calculate M = Total no. of trajectories (N)/(k+1).;

2 Fetch out a set of M’ trajectories having maximum separability,
Gy = MMRS(G);

3 Select Gy, a set of top M trajectories to be represented as base
trajectories from G such that Gy € Gy AM < M

4 Update G by removing the base trajectories as they have been
represented by a different set Gy, G = G — Gy

5 Create a separate set S; corresponding to each of the base
trajectories T of G r;

6 foreach trajectory T; € G do
7 foreach trajectory T; € Gyr do
8 L Calculate Hausdorff distance with T3, H(T;,T;);
9 Select the trajectory T); with minimum Hausdorff distance for 7T; ;
10 if |S;| <k +1 then
11 add trajectory T; to the cluster S; represented by it,
Sj =85 U{Ti};

12 Update the set G by removing trajectories that were assigned to a
cluster, G = G — S

13 Procedure NPRClassifier()

14 foreach cluster S; € S do

15 foreach cluster T; € S; do

16 | Compute SimilarV alue(T;);

17 Declare the trajectory with highest SimilarValue as the

Representative Trajectory (RT) of the cluster S;;

18 foreach trajectory T; € G do

19 Compute SimilarValue with RT of each cluster;
20 add trajectory T; to the cluster S; having highest
SimilarV alue with its RT;

21 foreach cluster S; € S do

22 Create dataset of all the trajectories belonging to the cluster;

23 Train an LSTM-RNN model on the trajectories of the dataset;

24 Save the model state (weights and biases) for the respective
cluster;

Once all of the trajectory data is filtered and appropriately ~ input-output gates through which the information flows
segregated into discrete clusters, we build a separate  in and out and a forget gate that remembers values of an
Long Short Term Memory (LSTM) network for each of the  arbitrary time interval. Further, there are weighted con-
clusters. An LSTM neuron is composed of three gates, the  nections associated with these gates, are trained using
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backpropagation that determines how the gates oper-
ate. Sometimes, in trajectory planning, there is a need to
remember the coordinates for a longer period i.e. the more
distant historical coordinates also contribute sometimes in
predicting the future coordinates. And the conventional
prediction models such as Markov Chains and even the
basic RNNs fail to characterize such long-term dependen-
cies. Therefore, LSTM architecture is implemented as it can
store such pertinent information more effectively.

is over data is aggregated and extracted through the data
streaming process and supplied to the Big Data Storage
Centers. In between, the flow control process ensures the
integrity in the data supply and that it does not suffer
from any problems such as data loss, congestion, etc. In
reality, high frequency sensors output several thousands
data points/second. Since, it is impractical to store this on
a single machine, the data is distributed across several
nodes. In this scenario, the local node or system performs

Algorithm 2: Prediction

Input : A partial 7?7 = {11, 15,15, Ty, ..., T} }.
Output: Next location T} 4.

1 repeat

2 Compute the cluster by partially executing procedure

NPRClassifier, NPRclassifer(77).;

3 Predict the next coordinate using the LSTMRNN model with the

state (weights and biases) belonging to the identified cluster,
Tt+1 — LSTMRNNclusterid(Tp);

4 Update the partial trajectory with the predicted coordinate to

5 until end;

predict further coordinates in the same way, T? = T? U {T;41};

5.2 Prediction

For each partial trajectory T? = {(;, C,, G5, ..., Ct} queried,
the best suitable representative cluster is estimated using
our previously defined NPR algorithm. Then, the correspond-
ing LSTM model is chosen in which the partial trajectory TP is
fed and the next location, G, ,is predicted. The T is updated
by appending the next predicted location C, ;. Then, the
best matching cluster is again estimated for the updated
TP, and the corresponding LSTM model is used to predict
the next location. Hence, the full trajectory is predicted by
sequentially computing the next locations using these steps.

5.3 Data extraction and storage

Figure 2 shows a brief conceptualization of the realistic
scenario on the extraction and loading of the trajectory
data into the systems. The data is first generated and
stored in local storage systems like mobile devices, loT
sensors, cell towers, remote servers, etc. And all these data
are in heterogeneous format since they are produced in
distinct formats and data types. Next, the data ingestion
process is performed on all these heterogeneous data
present in the local storage. Once the ingestion process

SN Applied Sciences

A SPRINGERNATURE journal

the pre-processing on the data stored locally and this
pre-processing is replicated synchronously across all the
devices. This also helps in making the data to be sent to
the main node for secondary stage processing to be all the
more less redundant and much cleaner through aggrega-
tion, summarization etc. In a nutshell the total amount of
data that is forwarded to the master node from the local
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Fig.2 Data extraction and loading
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node is minimized significantly leading to quick response
times and diminishing transmission costs.

6 Experimental settings and environment

In this section, we provide an detailed empirical analysis
to evaluate the performance of our proposed framework.

6.1 Dataset

Experiments are conducted against the real dataset to
evaluate the performance of the approach. The dataset’
was obtained from the T-drive project [39, 40] which had
contained one-week worth of continuously running non-
stop GPS trajectories of a total of 10,357 taxis from Feb.
2 to Feb. 8, 2008, within Beijing, China. As per [40], the
dataset represents 106,579 road nodes and 141,380 road
segments of the road network of Beijing.

Each data file of the dataset basically contained 4 fields:
(i) The TAXI ID of the related taxi. The attribute (ii) TIMES-
TAMP is the date/time in seconds of when the position was
sampled and the attributes (iii) and (iv) refers to the LON-
GITUDE and the LATITUDE corresponding to the acquired
GPS position. There were a total of 17.7 million data points
that accounted for 9 million kilometers of distance. Fig-
ure 3 plots the distribution of time interval and distance
interval between two consecutive points.

And as shown in the figure (b), because of being sam-
pled very frequently, most of the euclidean distances
between two data points across the trajectories are tend-
ing to 0. And with respect to this, the average euclidean

! The dataset is open-source and can be accessed from https://
www.microsoft.com/en-us/research/publication/t-drive-trajectory-
data-sample/
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distance between consecutively sampled data points
which is equivalent to 707 meters, is quite large for a city
traffic environment. On the other hand, the time stamp
sampling interval is more distributed. This is because of
variance in the traffic across different segments of the
road network. The average sampling interval was of 214
seconds.

In the above two plots are two-dimensional histograms,
density is plotted as a function of latitude and longitude.
Not surprisingly, as per the figure 4(a), the data mostly lie
on major roads and highways. Figure 4(b) further details
into the 5th Ring Road in Beijing. Cities in China use con-
centric ring roads centered on the city center.

6.1.1 Pre-processing step

Then, to prepare training and validation sets, we first
divide the trajectories between weekdays and weekends.
The 80% of the trajectories are randomly sampled from
the weekdays and weekends for the training and the rest
are included for validation. Hence, a total of 14.16 mil-
lion rows were considered for training while the rest 3.54
million rows were considered for validation. Then, GPS
coordinates in the form of latitude-longitude tuples were
converted to their corresponding GeoHashes using Geo-
hash mapping. After the data was filtered and completely
preprocessed, all of the data was stored on the system
using Apache Hadoop (HDFS) framework [27]. Since the
data storage capacity available on our machine was suffi-
cient to store the entire dataset. We build the data storage
architecture of just one node. Hence, there is no formation
of hadoop cluster since we use only one computer for stor-
age. Hence, also note that the logical cluster formed as per
our algorithm are disparate than the clusters that are nor-
mally thought of to be in big data reference. Apache Spark
[41] framework was adapted to update existing patterns,
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high density. The X-axis represents geographical longitude (degree

add new ones, and all of the other in-memory processing
tasks.

6.2 Evaluation protocols

We chose four performance metrics, namely average
prediction accuracy, one-step prediction accuracy, aver-
age distance error and one-step distance error to test our
results:

6.2.1 Prediction accuracy

It is the percentage of GPS coordinates correctly predicted
out of total number of steps till a specific step. Suppose a
predicted trajectory is Tp,ed = {Py,P5,P3,Py,Ps,...,P,}and
true trajectory is Ty, = {77, 75, T3, T4, Ts, ..., T, } prediction
accuracy is given by,

PA=1/n) QP,T)
j=1

Where j is the step and function Q(P;, T)) returns 1if P, = T,
else 0.

6.2.2 One-step prediction accuracy (OA)

This metric is defined as the ratio of the one step locations
that are correctly predicted to the total number of one
step predictions made for every queried trajectory in the
test set.

6.2.3 Average distance error

At a specific step of prediction, Distance Error is defined as
the average spatial distance between the predicted
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coordinates and actual coordinates. Let predicted coordi-
nates of the jth step be (x;’,yf) and true coordinates be

(x;,¥;)- Then, the distance error at that step is given by,

DE = /0 = x)2 + (7F =)

6.2.4 One-step distance error (ODE)

Similar to the OA metric, the ODE metric is defined as the
average distance error for just the next location prediction.

6.3 Compared frameworks

Since our novel framework mainly focuses on combining
the effective clustering of trajectories with that of deep
learning methods for prediction to improve the long term
prediction performance, we primarily compare our frame-
work to the previous state-of-the-art clustering based but
non-deep learning methods and non-clustering deep
learning methods.

6.3.1 LSTMRNN [6]

We compare our approach with the award winning LSTM
RNN network [4] that reads the trajectory one GPS point
at a time from the beginning to the end of each input pre-
fix. LSTMs, in general are considered to be an upliftment
over conventional recurrent architectures such as RNNs
as they significantly ameliorate the problem of vanishing
and exploding gradients. As an improvement, the archi-
tecture is adopted where a consecutive varying range of
GPS points are used to predict the next location unlike
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the previous case where only a single previous location is
used to prediction.

6.3.2 objectTra-MM [4]

objectTra-MM is built up of a combination of two novel
models exploiting the similarity between objects and the
similarity between trajectories. The first model clusters
similar objects based on heir spatial localities and then
adjoins this entire architecture to a variable order Markov
model. It is named object-clustered Markov model (object-
MM). The second model carries out the identical process
but using the trajectories and similarities between them
for clustering. Effective integration of this leads to the final
next location predictor named objectTra-MM.

6.4 Execution

After all of the preprocessing, the k-nearest neighbor clus-
tering algorithm is performed at the node to cluster the
entire dataset into 500 clusters in the standard parameters
setting using Apache Spark MILib’s [17] pyspark. Note that
the optimal cluster number of 500 is chosen after explor-
ing the performances of several total cluster numbers and
corresponding cluster sizes. We shall also be briefly dem-
onstrating the performance achieved the with different
total cluster numbers and hence also different cluster sizes.
Apache Spark’s in-memory processing is highly efficient
as it is performed directly at the node. After that, the pys-
park scripted Nearest Prototype Rule (NPR) is applied to
the remaining uncluttered trajectories for clustering.

As per figure 1 once the trajectories are completely
clustered, a corresponding LSTM RNN model having the
same architecture is trained for each of the clusters. Each
of the models was trained for 25 epochs and a batch size of

Fig. 5 The above graphs shows

64.The LSTM RNN model was implemented using Tensor-
flow 2.0. After the completion, a partial trajectory is que-
ried to Apache’s HDFS using Spark in real-time. Apache
Spark returns the cluster id to which the partial trajectory
belongs using Nearest Prototype Rule (NPR). This queried
partial trajectory is then fed to the LSTM RNN of the cor-
responding cluster and as soon as the next location is pre-
dicted, the partial trajectory is updated by appending the
predicted location to it and queried using Apache Spark.
This process is repeated until the end of the trajectory. In
the rest of the paper, we refer to our proposed approach
as Clustering-based LSTM.

When we compared our results, with two existing, most
commonly referred approaches, namely LSTM RNN [6]
and objectTra-MM [4]. Each of these models were trained
using the training set as used for the proposed approach.
The trajectories of the validation set were then used to
analyze the performance. As the Clustering-based LSTM
(Proposed) and objectTra-MM (Existing) models are having
more than one predicting models hence average accuracy
achieved by the corresponding LSTM and HMM model of
each cluster is used for comparison.

7 Results and discussion

7.1 Comparison of LSTM RNN, objectTra-MM,
and cluster LSTM for long-term predictions

Figure 5 shows the performance in terms of prediction
accuracy w.r.t. the number of steps involved in all the three
approaches. The Cluster LSTM approach outperformed the
LSTM RNN as well as objectTra-MM in terms of accuracy.
In the proposed approach 8th step accuracy is better than
the 5th step accuracy of the other two approaches. Also,
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Table2 Comparison of average prediction accuracy and average Table 3 Comparison of Next Model OA ODE (km)
distance error location Prediction Accuracy
between all three models and
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between all three models ' ’

Cluster LSTM 0.639 0.332 objectTra-MM 0.32 0.32
LSTM RNN 0.569 0.424
objectTra-MM 0.524 0.641

as the number of steps increases the proposed approach
outperforms the other two approaches with the bigger
margins. This implies that, the proposed approach is an
even better choice for long distance trajectory predictions.
These favorable results are achieved through the proposed
approach (Cluster-LSTM) by leveraging the variance reduc-
tion capacity from the clustering technique and fusing it
with the sequence prediction algorithm of LSTM which
increases reliability for the long-term prediction. This can
also be the reason for another interesting observation w.r.t.
performance of Cluster-LSTM which shows less fluctuation
on the graph as compared to the other two approaches.
However with an increasing number of steps the predic-
tion accuracy of all three approaches declines. As fewer
instances are available for long distance trajectories hence
enough information is not gathered to accurately predict
future locations for long distances. Particularly, objectTra-
MM's accuracy is seen to have dropped drastically after
just 5 to 6 prediction step. This is because it cannot cap-
ture the sequence correlation for larger sequences, hence
are often not suitable for long distance prediction. This
further establishes the strength of LSTM in dealing with
time-series data and capture the long sequence correla-
tion in the data.

Figure 6 shows the Distance Error against the number of
steps. The graph demonstrates that the proposed model

SN Applied Sciences

A SPRINGERNATURE journal

has a minimum Distance Error in comparison to the other
two approaches. The experiment was conducted for the
number of steps as high as 25 and in all the cases the pro-
posed method demonstrates the minimum Distance Error.

It is observed through experiments that the clusters
have a trajectory pattern with an average length of 5.
Hence, the prediction accuracy and distance error are
calculated considering the average of 5 steps prediction.
Table 2 shows the comparative analysis of the proposed
approach with the compared two approaches. The average
prediction accuracy of the proposed approach Clustered-
LSTM is approx 64% while the other two models show the
average accuracy of below 60%. Also, the average distance
error of the proposed approach is the lowest of all the
three models and almost half of the distance error of the
objectTra-MM.

7.2 Next location prediction

In this experiment, we compare the cluster-LSTM to the
other two approaches for predicting upcoming consecu-
tive locations. Given a particular taxi’s current location, the
task is to forecast the next location where the taxi may
be going. Table 3 shows one-step accuracy (OA) and one-
step distance error (ODE) on the experimented T-drive
dataset. The cluster LSTM approach predicts the next loca-
tion with distance error of less than a quarter kilometer
and with approximately 80% accuracy. Even though the
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one-step distance error for cluster LSTM is about 0.23 kms,
its Average Distance Error is 0.332 kms. Whereas, for LSTM
RNN and objectTra-MM, the difference between average
DE and ODE is much larger. This suggests better perfor-
mance robustness and retention capacity of Cluster LSTM
for long-term prediction tasks. One another important
observation is that the average sampling interval for the
considered T-Drive dataset is 707 meters. Had the sam-
pling interval been more frequent, we suggest that this
could improve the performance of the cluster LSTM model.
Summarizing, we would suggest that Cluster LSTM outper-
forms both LSTM RNN and objectTra-MM for next location
prediction task.
ancewithethicalstan

7.3 Considering only latest locations of partial
trajectory for prediction

The conventional procedure is to find the most
suitable cluster for the queried partial trajectory
T, ={G, G, ..., G} For aT,, once the best cluster is
chosen as per the procedure, the length of the queried
partial trajectory T, consecutively increases as every pre-
diction is appended to the T,,. Further, this updated T,
is queried for next location prediction and then again
updated by appending the predicted location and so on.

Now we modify this basic conventional procedure.
Instead of feeding in fully known partial trajectory T, we
only consider the latest n number of output predictions by
the cluster LSTM to choose the best matching cluster and
then further predict the next step. Therefore, we choose
increasing number of latest location prediction by the
Cluster LSTM with known partial trajectories until predic-
tion and then investigate its performance.

The Average Distance Error for a corresponding number
of latest locations considered of known partial trajectories
is shown in Fig. 7. It can be seen from the figure that the
performance doesn’t drop until two or three locations of
the queried partial trajectory. The average distance error
is seen to be consistently increasing after the three lat-
est locations. This happens because as the length of T,
increases, its path probability exponentially decreases.
which means both the chance of identifying and being
assigned to the correct cluster as well as predicting correct
coordinates starts degrading.

7.4 Effect of number of clusters

In this experiment, we study the function of performance
of Cluster LSTM as a function of the number of clusters K.
Figure 8 shows Average DE for different No. of Clusters.
The higher the number of clusters, the tighter the clus-
ter boundaries. The Average Distance Error is seen to
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Fig. 7 The graph plot of Average Distance Error against latest loca-
tions of partial trajectory used to select best cluster in the NPR Pro-
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Fig. 8 Effect of number of clusters

decrease as the number of cluster increases. The is because
the larger number of clusters corresponds to more intri-
cately diversified clusters. Figure 8 shows that the cluster
LSTM performance improves with the higher number of
clusters. However, with higher number of clusters, more
LSTMs need to be trained, and hence, system complex-
ity increases. Moreover, the performance of Cluster LSTM
does not improve significantly above a certain value cor-
responding to the number of clusters. For our experiments
we note the highest number of cluster value to be 500,
after which the accuracy does not improve significantly.
Rather, the model complexity factor becomes more con-
cerning, as the complexity starts to elevate rapidly because
of increase in the number of LSTM model corresponding
to each cluster.

7.5 Time performance analysis
The latency in prediction is another important criterion

for the real-time trajectory prediction besides prediction
accuracy and distance error. The average prediction time
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Table 4 Average prediction
time of all the three
approaches (in seconds)

Prediction time

Cluster LSTM 0.96
LSTM RNN 0.79
objectTra-MM 0.51

for all three approaches is presented in Table 4. Prediction
time observed is the highest for the proposed approach
i.e. Clustered-LSTM. The added latency is obvious due to
the increased architectural complexity. However, this pre-
diction time still qualifies for the real-time requirement as
this is much smaller than the travel time. From the data
set it is observed that it takes an average time interval of
214 seconds to cover the average distance of 707 meters
between any specific sampled location and it's next sam-
pled location. So, the latency of 0.96 seconds is much
smaller than 214 seconds, and an increase in latency in
comparison to other methods can be considered insignifi-
cant. Therefore, when it comes to predicting long distance
trajectories, the overall results of the proposed approach
have demonstrated significantly improved accuracy and
distance metrics as well as the outstanding capability of
predicting in real-time.

8 Conclusion and future directions

In this paper, we proposed a novel method to predict a
complete long distance trajectory from the queried partial
trajectory in extremely large-scale data of the dense road
network. The proposed approach outperformed the exist-
ing approaches in Prediction accuracy and Distance error
with substantial gain and particularly for long distance
trajectory predictions. Moreover the deep learning model
is being trained without high-end computing resources.
The clustered approach made a large volume of data man-
ageable for LSTM training. The proposed approach can be
seen as a step towards bridging the gap for long-distance
trajectory prediction on the large-scale data by cluster-
ing data into several groups and applying deep learning
techniques on it. The conducted experiments establish
that clustered data improves the predictive performance
of the model as compared to other approaches where the
historical trajectories of vehicles of the entire region are
used as it is. It helped in reducing the data variance that
enabled better learning through reduced overfitting and
resulted in faster convergence in LSTM architecture. Also,
our approach helps in satisfying the requirement for real-
time predictions, and the use of a big data environment
framework to accommodate the proposed model, makes
it scalable.
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We further see opportunities for improvement in the
proposed model in terms of improved algorithms to learn
appropriate limits for members in each cluster on its own.
Deploying this model over the cloud can be an obvious
next step. The presented work, being straightforward and
intuitive yet highly scalable and robust, may also lead to
form a base framework for the development of more mod-
ular and extensive trajectory prediction systems.
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