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Abstract
This study presents a novel approach to predict a complete source to destination trajectory of a vehicle using a partial 
trajectory query. The proposed architecture is scalable to extremely large-scale data with respect to the dense road 
network. A deep learning model Long Short Term Memory (LSTM) has been used for analyzing the temporal data and 
predicting the complete trajectory. To handle a large amount of data, clustering of similar trajectory data is used that 
helps in reducing the search space. The clusters based on geographical locations and temporal values are used for training 
different LSTM models. The proposed approach is compared with the other published work on the parameters as Average 
distance error and one step prediction accuracy The one-step prediction accuracy is as good as 81% and Distance error 
are .33 Km. Our proposed approach termed Clustered LSTM is outperforming in both the parameters when compared 
with other reported results. The proposed solution is a clustering-based predictive model that effectively contributes 
to accurately handle the large scale data. The outcome of this study leads to improvise the navigation systems, route 
prediction, traffic management, and location-based recommendation systems.

Keywords  Long-term trajectory prediction · Recurrent neural Network · Large-scale trajectory data · Real-time 
prediction

1  Introduction

Technologies such as Sensors, the Global Positioning Sys-
tem (GPS), and the Internet of Things (IoT), has resulted in 
an abundant amount of mobility data. These data are gen-
erated and shared by businesses, public administrations, 
non-profit organizations, scientific research institutes, etc. 
They want to capture and analyze this data to make bet-
ter decisions for future actions. The improved data mining 
methods are important to efficiently process and facilitate 
better decisions using this huge volume of data. As a con-
sequence of churning a large volume of data, Mobility 
Data Analytics, or Trajectory Prediction, has become an 

active ongoing research avenue [5, 10, 32]. These research 
outcome will lead to improved navigation [20], route pre-
diction [28], traffic sensing [14] and location-based rec-
ommendations [3]. These types of analysis will be helpful 
for smart city projects to develop, deploy, and promote 
sustainable development practices to address growing 
urbanization challenges.One of the major urbanization 
challenges is mobility, and recommendations while navi-
gation is an essential service in large cities. Use of mobility 
data for trajectory prediction will help arrive at an optimal 
framework for this type of application requirement.

If a person moves across the same roads a repeated 
number of times, his inference capabilities enable him/
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her to make smart decisions and plan the trajectory that 
would be shorter and better. This analogy is used for the 
trajectory prediction of the moving body. The process of 
predicting the path of the moving vehicles based on the 
available vehicle mobility data is termed as Trajectory 
Prediction (TP). Recently, several studies have been car-
ried out on trajectory prediction using machine learning 
techniques [1, 29, 34] that can categorize into two types. 
The first type is the short-term trajectory prediction model, 
which predicts the route only up to a few locations and 
considers only a short history for prediction. These types 
of studies are applicable to small cities where the road 
networks are small compared to large cities. The second 
type is the long term trajectory prediction models.Long 
term Trajectory prediction models predicts more number 
of intermediate locations and hence requires more similer 
data for training. In large cities, these trajectories usually 
follow a complex road network making their mobility data 
ambiguous. In these cases, long term predictions are more 
useful and effective as cost and time of travel has a higher 
multiplicative factor.

It is a challenging task to carry out trajectory prediction 
from a large amount of trajectory data using conventional 
computing algorithms. The Machine Learning algorithms 
for Trajectory Prediction are experimented with a small 
set of data and have shown results. These algorithms also 
failed to show similar results in real-life large-scale trajec-
tory data. It is because the complexity level increases at 
a much higher rate with increasing number of intersect-
ing and overlapping trajectory scenario. There are some 
implementations based on the Markov model and other 
traditional pattern recognition algorithms such as cluster-
ing-based algorithms that rely only on the initial 2 or 3 GPS 
points and cannot predict long term trajectories very effi-
ciently. Some of the modern practices are using Recurrent 
Neural Network (RNN) [7, 22]. Its hidden layer can very well 
store long-term dependencies between points. However, 
these systems tend to be sensitive to small changes in the 
future scope.

There are applications [31] that shows that the RNN and 
Long short term memory (LSTM) have performed better 
on the time series data. However, as the training data 
increases, the architecture of these models becomes more 
and more complex. Training these models in a reasona-
ble time demands special and expensive hardware. Also, 
the data set as a whole has a lot of patterns and makes 
it difficult for any singular model to learn with this high 
variance data. Hence, to keep up with both the volume 
and complexity of the data for long-distance trajectories, 
we propose a robust approach that is scalable in terms of 
size and scalable. The scenario of the overlapping road is 
typical in major cities around the world. It is quite intuitive 
that the path taken by any vehicle will be more regulated/

motivated by the moving pattern of that vehicle in the 
same area in comparison to a different one. Hence, we first 
apply the clustering technique on the large trajectory data 
considering time and location. Then, corresponding RNN 
models are constructed and trained on the trajectories of 
the same cluster to learn the movement patterns within 
that cluster. Such clustering of data is especially beneficial 
for complex models such as LSTMs. Clustering will result 
in improved performance, as one big problem is divided 
into several smaller problems. Each model has the task of 
learning moving patterns of smaller areas. All these mod-
els are combined to solve the bigger and complex prob-
lems. Dividing the problem to sub-problem is to tackle the 
time and space complexity of the deep learning model in 
a big data environment [8, 23].

1.1 � Contribution

This paper proposes a predictive model where a clustering 
technique is applied before LSTM to address the scaling 
issue and to capture the local phenomenon in the data. 
This way the large volume of data is grouped into smaller 
clusters making the LSTM training manageable without 
high-end resources. This helps to achieve the following 
research objectives 

1.	 To overcome the issues of scalability, data are geo-
graphically clustered before applying multiple LSTM 
models to predict the trajectory.

2.	 A comparative analysis of the proposed approach 
(geographically cluster-LSTM) with the other two con-
ventional approaches LSTM and cluster—HMM.

1.2 � Organization

This paper is organized into eight sections. Section 2 pre-
sents the related research work in the area of machine 
learning-based data modeling for location-based Tra-
jectory prediction. Section 3 is the problem formulation 
where the notations used in the paper are defined and the 
relationship of various entities is represented. Section 4 
gives a glimpse of the entire architecture and the proposed 
approach framework. Section 5 represents the Methodol-
ogy, tools, and concepts applied to achieve the proposed 
outcome. This section is consists of a stepwise algorithm 
to explain the overall methodology. Section 6 describes 
the steps followed for conducting the experimentation 
including data pre-processing. Section 7 includes results 
and discussion of the experimental analysis done for the 
proposed research work. Section 8 presents the conclu-
sions drawn and future directions identified.
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2 � Related work

A considerable amount of work has been done in recent 
years on trajectory prediction, also termed as destination 
prediction or trajectory querying. Here, we briefly discuss 
the work done for effective trajectory prediction involving 
pattern recognition or machine learning frameworks. Also, 
Table 1 shows a summarization of the related work done 
in the area of Trajectory Prediction. We mainly categorize 
the discussion of related works into 3 categories: symbolic 
rule based approaches, machine learning approaches and 
deep learning approaches.

2.1 � Symbolic rule based approaches

Initial methods for trajectory prediction involved scripting 
the symbolic rules to determine the movement patterns 
from the trajectories. Next location is predicted through 
association rules employed to infer from the observed pat-
terns in the movement. Morzy et al. [19] used a hybrid of 
the Prefix Span algorithm and frequency pattern tree as 
an association rule to predict the trajectories. Similarly, 
Monreale et al. [18] programmed a T-pattern Tree that 
accounted for the frequency of the trajectory patterns for 
predicting the next location. The issue, with this method, 
is, it is computationally expensive to identify such frequent 
trajectory patterns. Sometimes, the future location pre-
diction is also done by estimating the motion characteris-
tics through custom-programmed functions that use the 
recent movements of the object [18]. However, since the 
approaches mentioned in [18] are reported to be quite 
inaccurate for long distance predictions, they are only 
recommended for short-distance trajectory predictions.

2.2 � Machine learning based approaches

Later, the problems faced by using symbolic approaches 
were identified, and to overcome the same the research 
works corroborate widespread adoption of machine 
learning and data mining techniques in trajectory predic-
tion. The simplest clustering methods employ a singular 
training algorithm such as k-means, C-SCAN with some 
modifications to fit on the trajectory data [25, 35] or else, 
parameters such as vehicle frequencies in terms of flux can 
also be considered [12]. To make such approaches helpful 
in terms of accuracy, they are often combined with predic-
tion algorithms such as Markov Models (MM). Such meth-
ods tend to perform well on the small-scale, artificial data 
sets but when tested on real, large-scale trajectory data 
yield poor results [2, 4].

Other approaches involve prediction based on the 
semantic score where the semantic score is evaluated 

through the extraction of geographical and other seman-
tic features from the user trajectories [38]. However, the 
analysis suggests that the computation of semantic score 
causes computational overhead. A spatiotemporal predic-
tion technique proposed in [16] forms the cluster of the 
trajectories based on entropy and then use Hidden Markov 
Models (HMM) for prediction.

Other than being used as part of hybrid algorithms, 
HMMs have also been widely adopted by the research-
ers as an independent algorithm for trajectory prediction. 
Often, the map is considered as a grid, where each cell 
represents the specified location and HMMs are used to 
predict transition probability from one cell to next [13]. 
Also, the conventional framework involving HMM to pre-
dict the best location is sometimes extended to instead 
predict top-k locations [9]. This significantly boosts the 
prediction accuracy. However, as the number of locations 
to be predicted increases, the computational complexity 
in terms of both space and time begins to rise.

2.3 � Deep learning based approaches

Most forms of MMs failed to generalize discontinuous 
trajectory data [24]. Moreover, since the MMs are known 
to employ Viterbi algorithm for finding the hidden state 
sequence and Baum-Welch algorithm for parameter 
learning, they introduce a significant computational bur-
den when used on large-scale trajectory data. Due to the 
recent success of complex networks such as Recurrent 
Neural Networks (RNN) and Long Short Term Memory 
(LSTM) networks in sequence prediction, the researchers 
have started to replace HMMs with these architectures for 
trajectory prediction tasks as well. They are known to be 
scalable for large-scale data. Recently, a deep learning-
based human mobility prediction framework was pro-
posed by Wang et al. [33] using a LSTM network. It was 
trained on the user’s historical trajectories. Then, the basic 
model of LSTM was extended to be a multi-user, region 
oriented framework by incorporating the sequence-to-
sequence modeling. The results had shown a significantly 
reduced error rate accompanied by highly improved gen-
eralization abilities. In [26], RNN was used for predicting 
the exact coordinates of the next destination based on the 
taxi driver’s behavior. The RNN was trained on a sequence 
of pick-up and drop-off points to predict future drop-
off points. The framework was evaluated on the ECML/
PKDD Discovery Challenge 2015 dataset. Initial bench-
marking performance on the same dataset was reported 
by Brébisson et al. [6] using multi-layered perceptrons. 
Other alternative approaches such as recurrent neural net-
works, bidirectional recurrent neural networks, and other 
memory networks were also developed. Overall however, 
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Bidirectional RNNs with the window had given the best 
accuracy on the custom test set.

Further, Pan et al. [21] addressed two main issues in pre-
dicting traffic. First, complexity in both spatial and tem-
poral correlations found in urban traffic by using a deep 
meta-learning based approach to predict traffic. And sec-
ond, issue of the diversity and variation present in such 
Spatio-temporal correlations by incorporating sequence to 
sequence modeling in the developed ST-MetaNet model.

Yao et al. [36] proposed a composite two neural net-
work model Convolutional Neural Network (CNN) and 
LSTM to model both spatial and temporal relations simul-
taneously in predicting taxi demand in Guangzhou, China. 
These prior developed approaches are oriented around 
either predicting short-distance trajectory using the large-
scale data or long-distance prediction for up to medium-
sized data.

3 � Problem formulation

This section represents the notations used in the paper 
for the entities like trajectory, clusters, partial trajectory. 
Initially, G is the data set of randomized trajectories rep-
resented as eq. 1.

where G is a set comprising of the total trajectories T, span-
ning the region’s network i.e. N, for a given period of time.

Definition 1  Trajectory is the sequence of the location 
coordinate tuples followed by a vehicle during a trip. Each 
trajectory T may have different length l. The trajectory T 
can be defined as a set whose elements are time-ordered 
sequences of coordinates as shown in equation 2,c

C1 is the starting coordinate termed as source, and last 
coordinate is the final location termed as destination of 
the trajectory. All coordinates in between, Ci , represents 
the intermediate location where the vehicle travelled 
through.

Definition 2  Clusters The entire set of trajectories G is 
divided into clusters. Each trajectory is associated to some 
clusters. Sj is the jth cluster, T j

i
 represents the ith trajectory 

associated to the jth cluster.

The above equation 3 represents the schema of each clus-
ter. There are M trajectories present in the cluster. When 

(1)G = {T1, T2, T3,… , TN}
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these clusters are combined, they result into a complete 
trajectory set i.e (equation 4).

Definition 3  Partial Trajectory Tp is defined as part of the 
complete trajectory. Every thing else is same except C1 may 
not necessarily be the source and Cl may not necessarily 
be the destination equation 5).

where Ci denotes coordinates indexed at specific instant 
i. To mention, the partial trajectory Tp has all of the char-
acteristics identical to trajectory T but that it is partial in 
nature and is not complete.

Definition 4  Statement If a set of historical trajectories 
is given as G = {T1, T2, T3,… , TN} then, for queried partial 
trajectory Tp = {C1,C2,C3,… ,Ct} the goal is to predict the 
next location Ct+1.

4 � Proposed approach

This section briefly presents the proposed work for pre-
dicting the next location in the trajectories. We consider 
the scenario of major cities, where there is a large area of 
the road network which increases the trajectory data and 
also leads various options for the taxis. Sometimes these 
taxis follow unusual paths. So, to mine the routing pattern 
of the moving objects, we propose to cluster the historical 
trajectories and thereby segregate the data into several 
groups based on the similarities between the trajectories. 
Further, for quickly clustering the trajectories through 
Nearest Prototype Rule (NPR), we introduce cluster head 
as Representative Trajectories (RT) for each cluster. The 
clustering algorithm partitions all of the trajectories into 
a different cluster based on the paths followed and the 
distance between these trajectories. After clustering, a 
deep learning architecture named LSTM shall be trained 
separately for each cluster using only the trajectories of 
that cluster. The LSTM model performs the task of predict-
ing the future location given the partial trajectory, which 
results in improved performance for prediction of long-
term trajectory.

The entire pipeline for our trajectory prediction model 
is described hereby a concise way. Figure 1 presents the 
streaming of the data in our model. The model shall record 
the data that is collected at the secondary storage from 
the local storage through the streaming process. Here we 
use the Big Data Environment as the distributed storage 
environment because the size of the real-world data can 
easily outgrow the storage space available in the single 

(4)S = {S1, S2, S3,… , Sk}

(5)Tp = {C1,C2,C3,… ,Ct}

system. Initially, as the data is streamed into a distributed 
environment and stored across various nodes. Then, all of 
the trajectory data shall be grouped using our hybrid clus-
tering approach and the RT is generated as a cluster head 
for each of the clusters.

The geographical grouping using KNN based cluster-
ing technique is performed as the pre-processing task on 
the trajectory data. A corresponding LSTM architecture is 
developed separately for each of the clusters on the front-
end and trained with the member trajectories as input. 
Once the LSTM architectures are trained for different clus-
ters, all their parameters are saved in the system. Now, 
whenever a partial trajectory is queried in real-time and its 
future location is required to be predicted, it is first parsed 
through an NPR (Nearest Prototype Rule) classifier. The role 
of the NPR classifier in the prediction model is to evaluate 
which cluster’s RT showcases the highest SimilarValue with 
the queried trajectory and thereby feed the trajectory as 
an input to the LSTM model of that cluster. As the LSTM 
model predicts the next location, the queried trajectory is 
updated by the addition of the new predicted location and 
iterative inputted to an NPR classifier for prediction. In this 
way, the process is repeated until the end of the trajectory.

5 � Methodology

This section describes the methodology used to achieve 
the proposed objectives in this paper. It is explained in two 
phases- training followed by prediction.

5.1 � Training

The training processes is divided into two parts, clustering 
the trajectory data based on the geographical locations 
and then training the model on the clustered data.

5.1.1 � Clustering the data

The first step of our training algorithm is to group the 
entire set of trajectory data into appropriate clusters based 
on similarities between the trajectories of a specific area 
during a specific time interval. For this, we use a modifica-
tion of the k-nearest neighbor algorithm by considering 
the trajectories instead of points. Note that for our algo-
rithm in this paper, by mentioning the term nearest, we 
mean the trajectory that is in the highest similarity with 
another trajectory. We start by considering a trajectory and 
the value k indicating the number of nearest neighbors 
(in this case nearest trajectories) to be grouped. Thus, the 
total of (k + 1) trajectories shall be grouped into each of 
the clusters. This means that each cluster, during the start 
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shall be having approximately k+1 trajectories. Thus, the 
number of clusters M can be determined as

Now, once the number of clusters to be formed is known 
i.e. M, we proceed further to form those M clusters. For this, 
we first determine the M most distinguished trajectories 
from the entire dataset. We use the Maximin Random Sam-
pling (MMRS) algorithm described in [11] is used to find 
such trajectories. It ensures that that the selected set of 
trajectories has maximum separability and not more than 
one trajectory is selected from the same route. Upon ini-
tially performing MMRS algorithm on the entire trajectory 
data, arbitrary no. of trajectories, let us say M′ are selected 

(6)M =
Total no. of trajectories (N)

(k + 1)

Fig. 1   Schematic diagram of 
the proposed approach

from each of the routes. Therefore, M trajectories out of a 
total of M′ trajectories are selected having the maximum 
separability in terms of distance measure. These M trajec-
tories form the base trajectories of their respective cluster.

Once the base trajectories are formed, k trajectories 
are to be selected for each of the base trajectories such 
that they are nearest and in the highest similarity with the 
base trajectory of the corresponding cluster. Now, as men-
tioned earlier, we use the concept of the kNN algorithm 
with some modifications to cluster the trajectories. Here, 
the amount of proximity or similarity can not be measured 
in quite the same way as in the original kNN algorithm. 
The reason being that kNN usually uses Euclidean Distance 
as a metric to calculate the nearness of the two points, 
which cannot be seen as a suitable metric for measuring 
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nearness in trajectories. Hence, we measure the Hausdorff 
Distance between the trajectories and take the k trajec-
tories having the least Hausdorff Distance measure with 
the base trajectories of the corresponding clusters. For any 
two trajectories represented by A and B, their Hausdorff 
distance can be calculated as,

h(A, B) ranks each co-ordinate of A based on its nearest 
point of B.

Thus, with the selection of M base trajectories correspond-
ing to each of the clusters, the algorithm can be said to be 
partially completed.

5.1.2 � Nearest prototype rule

Still, there shall be plenty of trajectories in the dataset that 
weren’t assigned to any of the M clusters as kNN would 
only group k+1 trajectories into a single cluster. The Near-
est Prototype Rule (NPR) is implemented to cluster such 
non-sampled trajectories. For the efficient and accurate 
implementation of NPR, the Representative Trajectory 
(RT) is required to be computed. Such trajectories are 
interpreted as the best possible representation of the tra-
jectories of that cluster. It can be thought to be analogous 
to the centroid in the polygon except that to compute the 
centroid of clusters of trajectories requires more intricate 
and composite methods. There are a bunch of methods 
proposed to compute the representative trajectory of the 
cluster computing the mean trajectory using the mean of 
the GPS coordinates of all trajectories for each timestamp 
[11, 30]. However, there are a couple of problems in imple-
menting this method. First, merely computing a trajectory 
by a statistical mean of all trajectories in the cluster does 

(7)H(A, B) = max(h(A, B), h(B,A))

(8)h(A, B) = max
a∈A

min
b∈B

||a − b||

not always mean that there shall be a real pathway on the 
roadmap through which the trajectory can be routed. Sec-
ond, the trajectories are all of the different lengths, and 
therefore, computing the mean would introduce bias as all 
the trajectories shall not be able to participate in average 
estimation at all time-stamps. Next, it is also proposed to 
sample a random trajectory from the cluster and denote 
it as an RT. It is not usually recommended, as sometimes 
a huge deviation is observed between the random trajec-
tory selection and the actual best RT. Therefore, we choose 
the approach presented in [15, 37] to nominate a trajec-
tory that has minimum dissimilarity among the trajecto-
ries of the same cluster. For every trajectory Ti , we esti-
mate the SimilarValue metric that quantifies the similarity 
between that trajectory and the rest of the trajectories in 
that cluster.

After the SimilarValue is computed for each trajectory, the 
trajectory with the highest SimilarValue is assumed to be 
the representative trajectory.

Now that the RT is computed for each cluster, we pro-
ceed to accommodate the most distinguished and unusual 
trajectories that were not classified in the initial attempt, 
into appropriate clusters through Nearest Prototype Rule 
(NPR). In this, we again employ the algorithm used for 
computing the RT, but this time with one to one map-
ping. This means that we compute the SimilarValue metric 
for the unassigned trajectory with the RT of each cluster. 
Then, the cluster whose RT has the highest SimilarValue 
with the trajectory is assigned the trajectory of that clus-
ter. The same process is repeated for all the unclustered 
trajectories. The procedure is represented by the name 
NPRClassifier in Fig. 1 and Algorithm 24.

(9)Similar Value(Ti) =

∑N

j=1
Similarity(Ti , Tj)

N
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5.1.3 � Training the architecture

input-output gates through which the information flows 
in and out and a forget gate that remembers values of an 
arbitrary time interval. Further, there are weighted con-
nections associated with these gates, are trained using 

Once all of the trajectory data is filtered and appropriately 
segregated into discrete clusters, we build a separate 
Long Short Term Memory (LSTM) network for each of the 
clusters. An LSTM neuron is composed of three gates, the 
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backpropagation that determines how the gates oper-
ate. Sometimes, in trajectory planning, there is a need to 
remember the coordinates for a longer period i.e. the more 
distant historical coordinates also contribute sometimes in 
predicting the future coordinates. And the conventional 
prediction models such as Markov Chains and even the 
basic RNNs fail to characterize such long-term dependen-
cies. Therefore, LSTM architecture is implemented as it can 
store such pertinent information more effectively.

Fig. 2   Data extraction and loading

the pre-processing on the data stored locally and this 
pre-processing is replicated synchronously across all the 
devices. This also helps in making the data to be sent to 
the main node for secondary stage processing to be all the 
more less redundant and much cleaner through aggrega-
tion, summarization etc. In a nutshell the total amount of 
data that is forwarded to the master node from the local 

5.2 � Prediction

For each partial trajectory Tp = {C1,C2,C3,… ,Ct} queried, 
the best suitable representative cluster is estimated using 
our previously defined NPR algorithm. Then, the correspond-
ing LSTM model is chosen in which the partial trajectory Tp is 
fed and the next location, Ct+1 is predicted. The Tp is updated 
by appending the next predicted location Ct+1 . Then, the 
best matching cluster is again estimated for the updated 
Tp , and the corresponding LSTM model is used to predict 
the next location. Hence, the full trajectory is predicted by 
sequentially computing the next locations using these steps.

5.3 � Data extraction and storage

Figure 2 shows a brief conceptualization of the realistic 
scenario on the extraction and loading of the trajectory 
data into the systems. The data is first generated and 
stored in local storage systems like mobile devices, IoT 
sensors, cell towers, remote servers, etc. And all these data 
are in heterogeneous format since they are produced in 
distinct formats and data types. Next, the data ingestion 
process is performed on all these heterogeneous data 
present in the local storage. Once the ingestion process 

is over data is aggregated and extracted through the data 
streaming process and supplied to the Big Data Storage 
Centers. In between, the flow control process ensures the 
integrity in the data supply and that it does not suffer 
from any problems such as data loss, congestion, etc. In 
reality, high frequency sensors output several thousands 
data points/second. Since, it is impractical to store this on 
a single machine, the data is distributed across several 
nodes. In this scenario, the local node or system performs 
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node is minimized significantly leading to quick response 
times and diminishing transmission costs.

6 � Experimental settings and environment

In this section, we provide an detailed empirical analysis 
to evaluate the performance of our proposed framework.

6.1 � Dataset

Experiments are conducted against the real dataset to 
evaluate the performance of the approach. The dataset1 
was obtained from the T-drive project [39, 40] which had 
contained one-week worth of continuously running non-
stop GPS trajectories of a total of 10,357 taxis from Feb. 
2 to Feb. 8, 2008, within Beijing, China. As per [40], the 
dataset represents 106,579 road nodes and 141,380 road 
segments of the road network of Beijing.

Each data file of the dataset basically contained 4 fields: 
(i) The TAXI ID of the related taxi. The attribute (ii) TIMES-
TAMP is the date/time in seconds of when the position was 
sampled and the attributes (iii) and (iv) refers to the LON-
GITUDE and the LATITUDE corresponding to the acquired 
GPS position. There were a total of 17.7 million data points 
that accounted for 9 million kilometers of distance. Fig-
ure 3 plots the distribution of time interval and distance 
interval between two consecutive points.

And as shown in the figure (b), because of being sam-
pled very frequently, most of the euclidean distances 
between two data points across the trajectories are tend-
ing to 0. And with respect to this, the average euclidean 

distance between consecutively sampled data points 
which is equivalent to 707 meters, is quite large for a city 
traffic environment. On the other hand, the time stamp 
sampling interval is more distributed. This is because of 
variance in the traffic across different segments of the 
road network. The average sampling interval was of 214 
seconds.

In the above two plots are two-dimensional histograms, 
density is plotted as a function of latitude and longitude. 
Not surprisingly, as per the figure 4(a), the data mostly lie 
on major roads and highways. Figure 4(b) further details 
into the 5th Ring Road in Beijing. Cities in China use con-
centric ring roads centered on the city center.

6.1.1 � Pre‑processing step

Then, to prepare training and validation sets, we first 
divide the trajectories between weekdays and weekends. 
The 80% of the trajectories are randomly sampled from 
the weekdays and weekends for the training and the rest 
are included for validation. Hence, a total of 14.16 mil-
lion rows were considered for training while the rest 3.54 
million rows were considered for validation. Then, GPS 
coordinates in the form of latitude-longitude tuples were 
converted to their corresponding GeoHashes using Geo-
hash mapping. After the data was filtered and completely 
preprocessed, all of the data was stored on the system 
using Apache Hadoop (HDFS) framework [27]. Since the 
data storage capacity available on our machine was suffi-
cient to store the entire dataset. We build the data storage 
architecture of just one node. Hence, there is no formation 
of hadoop cluster since we use only one computer for stor-
age. Hence, also note that the logical cluster formed as per 
our algorithm are disparate than the clusters that are nor-
mally thought of to be in big data reference. Apache Spark 
[41] framework was adapted to update existing patterns, 

Fig. 3   Histograms of time 
interval and distance between 
two consecutive points. a Time 
Intervals b Distance Intervals

1  The dataset is open-source and can be accessed from https://​
www.​micro​soft.​com/​en-​us/​resea​rch/​publi​cation/​t-​drive-​traje​ctory-​
data-​sample/

https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
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add new ones, and all of the other in-memory processing 
tasks.

6.2 � Evaluation protocols

We chose four performance metrics, namely average 
prediction accuracy, one-step prediction accuracy, aver-
age distance error and one-step distance error to test our 
results:

6.2.1 � Prediction accuracy

It is the percentage of GPS coordinates correctly predicted 
out of total number of steps till a specific step. Suppose a 
predicted trajectory is Tpred = {P1, P2, P3, P4, P5,… , Pn} and 
true trajectory is Ttrue = {T1, T2, T3, T4, T5,… , Tn} prediction 
accuracy is given by,

Where j is the step and function Q(Pj , Tj) returns 1 if Pj = Tj 
else 0.

6.2.2 � One‑step prediction accuracy (OA)

This metric is defined as the ratio of the one step locations 
that are correctly predicted to the total number of one 
step predictions made for every queried trajectory in the 
test set.

6.2.3 � Average distance error

At a specific step of prediction, Distance Error is defined as 
the average spatial distance between the predicted 

PA = 1∕n

n∑

j=1

Q(Pj , Tj)

coordinates and actual coordinates. Let predicted coordi-
nates of the jth step be (xp

j
, y

p

j
) and true coordinates be 

(xj , yj) . Then, the distance error at that step is given by,

6.2.4 � One‑step distance error (ODE)

Similar to the OA metric, the ODE metric is defined as the 
average distance error for just the next location prediction.

6.3 � Compared frameworks

Since our novel framework mainly focuses on combining 
the effective clustering of trajectories with that of deep 
learning methods for prediction to improve the long term 
prediction performance, we primarily compare our frame-
work to the previous state-of-the-art clustering based but 
non-deep learning methods and non-clustering deep 
learning methods.

6.3.1 � LSTM RNN [6]

We compare our approach with the award winning LSTM 
RNN network [4] that reads the trajectory one GPS point 
at a time from the beginning to the end of each input pre-
fix. LSTMs, in general are considered to be an upliftment 
over conventional recurrent architectures such as RNNs 
as they significantly ameliorate the problem of vanishing 
and exploding gradients. As an improvement, the archi-
tecture is adopted where a consecutive varying range of 
GPS points are used to predict the next location unlike 

DE =
√

(x
p

j
− xj)

2 + (y
p

j
− yj)

2

Fig. 4   Distribution of GPS points, where the color indicates the 
density of the points. Dark colour indicates low density, light colour 
high density. The X-axis represents geographical longitude (degree 

E) and the Y-axis geographical latitude (degree N). a Data overview 
in Beijing b Within the 5th Ring Road of Beijing
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the previous case where only a single previous location is 
used to prediction.

6.3.2 � objectTra‑MM [4]

objectTra-MM is built up of a combination of two novel 
models exploiting the similarity between objects and the 
similarity between trajectories. The first model clusters 
similar objects based on heir spatial localities and then 
adjoins this entire architecture to a variable order Markov 
model. It is named object-clustered Markov model (object-
MM). The second model carries out the identical process 
but using the trajectories and similarities between them 
for clustering. Effective integration of this leads to the final 
next location predictor named objectTra-MM.

6.4 � Execution

After all of the preprocessing, the k-nearest neighbor clus-
tering algorithm is performed at the node to cluster the 
entire dataset into 500 clusters in the standard parameters 
setting using Apache Spark MlLib’s [17] pyspark. Note that 
the optimal cluster number of 500 is chosen after explor-
ing the performances of several total cluster numbers and 
corresponding cluster sizes. We shall also be briefly dem-
onstrating the performance achieved the with different 
total cluster numbers and hence also different cluster sizes. 
Apache Spark’s in-memory processing is highly efficient 
as it is performed directly at the node. After that, the pys-
park scripted Nearest Prototype Rule (NPR) is applied to 
the remaining uncluttered trajectories for clustering.

As per figure 1 once the trajectories are completely 
clustered, a corresponding LSTM RNN model having the 
same architecture is trained for each of the clusters. Each 
of the models was trained for 25 epochs and a batch size of 

64. The LSTM RNN model was implemented using Tensor-
flow 2.0. After the completion, a partial trajectory is que-
ried to Apache’s HDFS using Spark in real-time. Apache 
Spark returns the cluster id to which the partial trajectory 
belongs using Nearest Prototype Rule (NPR). This queried 
partial trajectory is then fed to the LSTM RNN of the cor-
responding cluster and as soon as the next location is pre-
dicted, the partial trajectory is updated by appending the 
predicted location to it and queried using Apache Spark. 
This process is repeated until the end of the trajectory. In 
the rest of the paper, we refer to our proposed approach 
as Clustering-based LSTM.

When we compared our results, with two existing, most 
commonly referred approaches, namely LSTM RNN [6] 
and objectTra-MM [4]. Each of these models were trained 
using the training set as used for the proposed approach. 
The trajectories of the validation set were then used to 
analyze the performance. As the Clustering-based LSTM 
(Proposed) and objectTra-MM (Existing) models are having 
more than one predicting models hence average accuracy 
achieved by the corresponding LSTM and HMM model of 
each cluster is used for comparison.

7 � Results and discussion

7.1 � Comparison of LSTM RNN, objectTra‑MM, 
and cluster LSTM for long‑term predictions

Figure 5 shows the performance in terms of prediction 
accuracy w.r.t. the number of steps involved in all the three 
approaches. The Cluster LSTM approach outperformed the 
LSTM RNN as well as objectTra-MM in terms of accuracy. 
In the proposed approach 8th step accuracy is better than 
the 5th step accuracy of the other two approaches. Also, 

Fig. 5   The above graphs shows 
the comparison between N 
steps Prediction Accuracy 
between the three approaches
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as the number of steps increases the proposed approach 
outperforms the other two approaches with the bigger 
margins. This implies that, the proposed approach is an 
even better choice for long distance trajectory predictions. 
These favorable results are achieved through the proposed 
approach (Cluster-LSTM) by leveraging the variance reduc-
tion capacity from the clustering technique and fusing it 
with the sequence prediction algorithm of LSTM which 
increases reliability for the long-term prediction. This can 
also be the reason for another interesting observation w.r.t. 
performance of Cluster-LSTM which shows less fluctuation 
on the graph as compared to the other two approaches. 
However with an increasing number of steps the predic-
tion accuracy of all three approaches declines. As fewer 
instances are available for long distance trajectories hence 
enough information is not gathered to accurately predict 
future locations for long distances. Particularly, objectTra-
MM’s accuracy is seen to have dropped drastically after 
just 5 to 6 prediction step. This is because it cannot cap-
ture the sequence correlation for larger sequences, hence 
are often not suitable for long distance prediction. This 
further establishes the strength of LSTM in dealing with 
time-series data and capture the long sequence correla-
tion in the data.

Figure 6 shows the Distance Error against the number of 
steps. The graph demonstrates that the proposed model 

has a minimum Distance Error in comparison to the other 
two approaches. The experiment was conducted for the 
number of steps as high as 25 and in all the cases the pro-
posed method demonstrates the minimum Distance Error.

It is observed through experiments that the clusters 
have a trajectory pattern with an average length of 5. 
Hence, the prediction accuracy and distance error are 
calculated considering the average of 5 steps prediction. 
Table 2 shows the comparative analysis of the proposed 
approach with the compared two approaches. The average 
prediction accuracy of the proposed approach Clustered-
LSTM is approx 64% while the other two models show the 
average accuracy of below 60%. Also, the average distance 
error of the proposed approach is the lowest of all the 
three models and almost half of the distance error of the 
objectTra-MM.

7.2 � Next location prediction

In this experiment, we compare the cluster-LSTM to the 
other two approaches for predicting upcoming consecu-
tive locations. Given a particular taxi’s current location, the 
task is to forecast the next location where the taxi may 
be going. Table 3 shows one-step accuracy (OA) and one-
step distance error (ODE) on the experimented T-drive 
dataset. The cluster LSTM approach predicts the next loca-
tion with distance error of less than a quarter kilometer 
and with approximately 80% accuracy. Even though the 

Fig. 6   The above graphs show 
the comparison between N 
steps Distance Error between 
the three approaches

Table 2   Comparison of average prediction accuracy and average 
distance error

Model Average PA Average DE (km)

Cluster LSTM 0.639 0.332
LSTM RNN 0.569 0.424
objectTra-MM 0.524 0.641

Table 3   Comparison of Next 
location Prediction Accuracy 
between all three models and 
Next location Distance Error 
between all three models

Model OA ODE (km)

Cluster LSTM 0.8 0.23
LSTM RNN 0.75 0.29
objectTra-MM 0.32 0.32
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one-step distance error for cluster LSTM is about 0.23 kms, 
its Average Distance Error is 0.332 kms. Whereas, for LSTM 
RNN and objectTra-MM, the difference between average 
DE and ODE is much larger. This suggests better perfor-
mance robustness and retention capacity of Cluster LSTM 
for long-term prediction tasks. One another important 
observation is that the average sampling interval for the 
considered T-Drive dataset is 707 meters. Had the sam-
pling interval been more frequent, we suggest that this 
could improve the performance of the cluster LSTM model. 
Summarizing, we would suggest that Cluster LSTM outper-
forms both LSTM RNN and objectTra-MM for next location 
prediction task.

ancewithethicalstan

7.3 � Considering only latest locations of partial 
trajectory for prediction

The conventional procedure is to find the most 
suitable cluster for the queried partial trajectory 
Tp = {C1,C2,C3,… ,Ct} . For a Tp , once the best cluster is 
chosen as per the procedure, the length of the queried 
partial trajectory Tp consecutively increases as every pre-
diction is appended to the Tp . Further, this updated Tp 
is queried for next location prediction and then again 
updated by appending the predicted location and so on.

Now we modify this basic conventional procedure. 
Instead of feeding in fully known partial trajectory Tp , we 
only consider the latest n number of output predictions by 
the cluster LSTM to choose the best matching cluster and 
then further predict the next step. Therefore, we choose 
increasing number of latest location prediction by the 
Cluster LSTM with known partial trajectories until predic-
tion and then investigate its performance.

The Average Distance Error for a corresponding number 
of latest locations considered of known partial trajectories 
is shown in Fig. 7. It can be seen from the figure that the 
performance doesn’t drop until two or three locations of 
the queried partial trajectory. The average distance error 
is seen to be consistently increasing after the three lat-
est locations. This happens because as the length of Tp 
increases, its path probability exponentially decreases. 
which means both the chance of identifying and being 
assigned to the correct cluster as well as predicting correct 
coordinates starts degrading.

7.4 � Effect of number of clusters

In this experiment, we study the function of performance 
of Cluster LSTM as a function of the number of clusters K. 
Figure 8 shows Average DE for different No. of Clusters. 
The higher the number of clusters, the tighter the clus-
ter boundaries. The Average Distance Error is seen to 

decrease as the number of cluster increases. The is because 
the larger number of clusters corresponds to more intri-
cately diversified clusters. Figure 8 shows that the cluster 
LSTM performance improves with the higher number of 
clusters. However, with higher number of clusters, more 
LSTMs need to be trained, and hence, system complex-
ity increases. Moreover, the performance of Cluster LSTM 
does not improve significantly above a certain value cor-
responding to the number of clusters. For our experiments 
we note the highest number of cluster value to be  500, 
after which the accuracy does not improve significantly. 
Rather, the model complexity factor becomes more con-
cerning, as the complexity starts to elevate rapidly because 
of increase in the number of LSTM model corresponding 
to each cluster.

7.5 � Time performance analysis

The latency in prediction is another important criterion 
for the real-time trajectory prediction besides prediction 
accuracy and distance error. The average prediction time 

Fig. 7   The graph plot of Average Distance Error against latest loca-
tions of partial trajectory used to select best cluster in the NPR Pro-
cedure

Fig. 8   Effect of number of clusters
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for all three approaches is presented in Table 4. Prediction 
time observed is the highest for the proposed approach 
i.e. Clustered-LSTM. The added latency is obvious due to 
the increased architectural complexity. However, this pre-
diction time still qualifies for the real-time requirement as 
this is much smaller than the travel time. From the data 
set it is observed that it takes an average time interval of 
214 seconds to cover the average distance of 707 meters 
between any specific sampled location and it’s next sam-
pled location. So, the latency of 0.96 seconds is much 
smaller than 214 seconds, and an increase in latency in 
comparison to other methods can be considered insignifi-
cant. Therefore, when it comes to predicting long distance 
trajectories, the overall results of the proposed approach 
have demonstrated significantly improved accuracy and 
distance metrics as well as the outstanding capability of 
predicting in real-time.

8 � Conclusion and future directions

In this paper, we proposed a novel method to predict a 
complete long distance trajectory from the queried partial 
trajectory in extremely large-scale data of the dense road 
network. The proposed approach outperformed the exist-
ing approaches in Prediction accuracy and Distance error 
with substantial gain and particularly for long distance 
trajectory predictions. Moreover the deep learning model 
is being trained without high-end computing resources. 
The clustered approach made a large volume of data man-
ageable for LSTM training. The proposed approach can be 
seen as a step towards bridging the gap for long-distance 
trajectory prediction on the large-scale data by cluster-
ing data into several groups and applying deep learning 
techniques on it. The conducted experiments establish 
that clustered data improves the predictive performance 
of the model as compared to other approaches where the 
historical trajectories of vehicles of the entire region are 
used as it is. It helped in reducing the data variance that 
enabled better learning through reduced overfitting and 
resulted in faster convergence in LSTM architecture. Also, 
our approach helps in satisfying the requirement for real-
time predictions, and the use of a big data environment 
framework to accommodate the proposed model, makes 
it scalable.

We further see opportunities for improvement in the 
proposed model in terms of improved algorithms to learn 
appropriate limits for members in each cluster on its own. 
Deploying this model over the cloud can be an obvious 
next step. The presented work, being straightforward and 
intuitive yet highly scalable and robust, may also lead to 
form a base framework for the development of more mod-
ular and extensive trajectory prediction systems.
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