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Variability of renewables like solar and wind remains a major concern, despite a substantial decrease in

the capital cost of their power conversion devices. One of the methods to improve the reliability of power

is to combine more than one renewable power sources and storage systems together, as per the local

renewable potential, is called a hybrid renewable energy system (HRES). The exact sizing of individual

sources and storage systems to fulfill the respective load demand for the renewable potential of the site is

not a straightforward task. Different sizing and optimization methodologies are developed by the

research community. A comprehensive overview of the literature of these methodologies is carried out in

this paper. Classical techniques were being applied to the HRES sizing, but their limitations led

researchers to increasingly look for multi-objective heuristic techniques. This has led to a range of

evolutionary algorithms being employed lately. The robustness of these techniques made them an

effective tool for the search of global optimum, but their convergence speed may well be slower in

comparison to gradient-based methods in the vicinity of the optimum point. It is needed to come up

with novel hybrid techniques, which can carefully combine the conventional and evolutionary

techniques by augmenting their advantages and at the same time avoiding their shortcomings. The

literature survey proves that HRES from very small capacity of a few watts to many megawatts have been

proposed for a variety of different locations throughout the world with varying degrees of cost of energy.
Introduction
Environmental degradation is anthropogenic [1] in its origin, is

well established scientific fact. The urgency [2] of mitigation of the

problem, before it reaches the point of no return, has put an

enormous responsibility on researchers and policymakers [3].

Many sections of the population in developing countries [4] are

yet to realize the fruits of full access to electricity. In addition to

this, the much-anticipated shift of the transport industry from

petroleum-based fuels to electrification will increase the electric

power demand in developed countries [5] as well. Renewable

energy sources have the potential to be the solution out of this

conundrum. Widespread adaption of renewable energy has not

been achieved, one of the reasons being its unfavorable
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economics. The initial cost of renewable energy extraction devices

used to be very high in comparison to conventional alternatives.

Although the source of energy is free and abundant in nature.

Technological advances in manufacturing coupled with mass

production [6] have solved the issue of installation cost largely.

Another issue with renewable energy is that it has to be utilized

spontaneously, as we have no control over the occurrence of the

natural phenomenon [7] from which the solar plant and Wind

turbines get input energy. The very nature of the resources is prone

to fluctuation in the availability on the mercy of nature.

One solution to iron out the fluctuation in output of renewable

sources, workable in most cases, can be to club more than one

renewable energy together. The combination can be of a renew-

able source either with a conventional source or with one or more

other renewable sources [8] as shown in Figure 1. This integration
1
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FIGURE 1

Schematic of typical HRES (choice of sources and storage systems may
vary as per the on-site renewable potential and designer’s preferences).

FIGURE 2

Flow chart of the typical optimization of PV-WT HRES.

RESEARCH REVIEW Renewable Energy Focus �Volume 39, Number 00 �December 2021

R
ESEA

R
C
H
R
EV

IEW
has the potential to scale down the storage capacity significantly.

This is called Hybrid Renewable Energy Systems (HRES). HRES can

be a combination of one renewable energy source with other

renewable or conventional sources. It may or may not have an

energy storage device of any kind coupled with it. When HRES is

grid-connected, the grid can be modeled as a battery of infinite

size. A variety of combinations of solar photovoltaic, solar ther-

mal, wind turbine, biogas, producer gas, geothermal energy,

hydrogen fuel cell (it can replace the battery), diesel generator,

batteries etc. have been tried for modeling and optimization of

HRES. Hybrid renewable energy plant can serve as an energy

supplier to heating, cooling or multi-generation purposes as well

[9]. Many researchers are considering the HRES as a viable source of

energy to fulfill the potable water requirements of communities

and industries [10].

The stochastic nature of the natural resources, a non-linear

variation of output power from PV array and Wind Turbine, the

choice of the type of components and their orientation and

economic model of Cost of energy generated by HRES [11]; makes

the optimization problem of HRES very complex as shown in the

Figure 2. This fact has led the researchers to develop many meth-

ods and techniques for optimization of HRES. Zhou et al. [12] have

done an extensive review of grid-independent hybrid solar and

wind systems. Modeling of components is considered crucial as it

will affect the final outcome of problem greatly. For example, a

small difference in temperature coefficient of solar PV cell will

affect the annual outcome significantly. Three artificial intelli-

gence techniques are reviewed as well. The need of multi-objective

work for HRES and lack of economic viability of FC based HRES

[13] is highlighted by Bernal-Agustı́n et al. Nema et al. [14]
2

reviewed the developments in HRES field and showed that apart

from modeling, proper energy control and management is an

important part of system development. In the review of stand-

alone HRES focused on PV, Bajpai and Dash [15] presented various

types of models of components including solar (electrical models

and thermal models), fuel cells, electrolyzer, hydrogen tank, ultra-

capacitor, battery, diesel generator and power conditioning equip-

ment (MPPT techniques) are elaborated.

Brief of sizing techniques along with assessment parameters is

given by Luna-Rubio et al. [16]. Erdinc and Uzunoglu [17] sum-

marized the research on HRES optimization using artificial tech-

niques and also proposed the new promising techniques. Storage

options for micro grid are briefed including types of batteries,

which tend to be bottleneck in the implementation of clean

energy options. Multi-objective optimization techniques applied

to HRES are reviewed by Fadaee and Radzi [18]. They concluded

that there is need of research on application of multi-objective

optimization methods in HRES. Optimal placement is detailed by

the Tan et al. [19] at length with description of conventional

techniques, modern techniques and potential future techniques.

They concluded that the problem of placing of Distributed Renew-

able Generation (DRG) needs systematic treatment in order to

increase the attraction towards it.

Deshmukh and Deshmukh [20] reviewed the modeling of

renewable sources and hybrid systems comprehensively. This gives
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an idea about the breadth of the field and its multidisciplinary

nature. They suggested more work in HRES with sources other than

PV-WT and for grid-connected systems. Trends in the optimiza-

tion of solar PV-wind based HRES are outlined with detailed input

data requirement modeling of main components by Sinha and

Chandel [21]. A brief overview of optimization of HRES optimi-

zation by covering various techniques of HRES sizing is done by

Bhandari et al. [22].

Energy management system for the HRES is a crucial aspect of

the operations. Linear programming and including artificial intel-

ligence techniques [23] are used for this purpose. The publications

on the optimal location of renewable sources for distributed gen-

erations is reviewed by Admouleh et al. [24] with a fine description

of modern optimization techniques. The policy of regional and

federal governments affects the affordability of HRES [25]. The

incentives and subsidies for the installation of REs can go a long

way in the accelerated adaption of HRES. The potential of PV-WT

based HRES system for Oman was studied by Al Busaidi et al. [26]

and two case studies are compared. A very structured review of PV-

WT HRES by Al Falahi et al. [27] and the importance of multi-

objective optimization is emphasized. Eriksson and Gray [28]

highlighted the lack of use of Fuel Cell technology for HRES

and the need for a dedicated software tool for modeling of FC-

HRES system. The evolution of policy apparatus for renewables in

India and way forward for the hybrid plants is surveyed by Das

et al. [29]. Addition of Bio with PV and WT can go a long way for

higher renewable penetration in countries like India as

highlighted by Bisht and Thakur [30]. Looking into all these review

papers, need for a comprehensive review of the literature was felt.

The motivation, objectives and salient features of this manuscript

are described in the following subsection.

Motivation and objectives
The increasing share of variable energies in the energy mix has

amplified the concern of energy policymakers regarding the tem-

poral mismatch between load demand and renewable energy

supplies. HRES are poised to play an important role to come out

of this conundrum. Looking into the importance of the proper

sizing HRES at the pre-installation stage, the search for optimal

configuration of HRES is imperative. The literature on this field is

quite extensive in terms of techniques used and the time period

over which it is used. As is evident from the attempts to review the

field of optimal configuration of HRES, they are generally focused

on a specific aspect of HRES design. Looking into the aforemen-

tioned literature, their scope and the breadth of the literature

surveyed, the need for a fresh review of a broad range of HRES

sizing optimization literature was felt. In addition to that new

research papers published on the subject create space for an effort

to revisit the literature on the subject. This paper is the culmina-

tion of the efforts done in that direction.

The recent advances in modern techniques and their applica-

tions in the field of HRES optimization resulted in the need for the

review of the subject, which includes cutting edge studies done in

the field and critically examining the way forward. In this study,

the classification of HRES optimization studies is done based on

the optimization techniques used and information is tabulated for

better representation. The type of energy sources and energy

storage devices used are also presented in addition to the
configuration of the system connectivity. It further identifies

the combination of energy resource and energy storage technolo-

gies and their topographies in terms of connectivity with the larger

grid. This manuscript is also aimed to reveal the set of combina-

tions and their final selection of the preferable energy mix for the

given geographies. It is expected that this manuscript will add

value to the literature on the optimal configuration of HRES.

The salient features of this study are its inclusion of a wide range

of renewable energy sources and energy storage methods. It also

identifies the category of assessment parameters of the concerned

studies. The objectives beyond economics and reliability are also

considered. Further, it builds the flow in a chronological way for a

given set of optimization techniques, which gives an idea about

the evolution of the optimization methods used in HRES sizing.

The architecture of power connection is also pointed out to

understand the nature of HRES configuration. The location of

the case study gives an idea about the type of HRES studies done

in the different geographic and economic contexts. The inclusion

of the size of the system as the feature of the study of literature

highlights the range of scale considered for the HRES. The final

result of the cost parameter of the optimal system gives an outlook

in terms of the economic favorability of HRES systems going

forward.

The remaining paper is organized as follows: Section ‘‘Conven-

tional techniques applied to HRES optimization’’ deals with the

use of conventional techniques for HRES optimization. Section

‘‘Modern optimization techniques for HRES sizing’’ delves into the

modern techniques utilized for the optimal configuration of HRES.

Section ‘‘conclusions and discussion’’ concludes the material for a

comprehensive understanding of the topic.

Conventional techniques applied to HRES optimization
Classical techniques of optimization are deterministic in their

methodology. They try to find the global optimum of the set of

the equations using mathematical formulations like linear pro-

gramming (LP), Nonlinear programming (NLP), Iterative techni-

ques, Graphical techniques, Quadratic Programming (QP),

Dynamic Programming (DP) etc. The advantage of these methods

is that they provide definite answer [31] but the demerit is that

they cannot handle a large number of variables in complex space.

Graphical technique
If the sizing variables are two, the graphical technique can be used

for the fairly intuitive representation of the sizing problem [32].

Graphical techniques give first hand observation of the impact of

the change of the size of components on assessment parameters of

the HRES system. Borowy and Salameh [33] have done modeling

and optimization of PV-wind system with battery for the given

number of Wind Turbines for the typical house of Massachusetts,

USA. They used LPSP as reliability criteria and system cost as

economic criteria with programming in PASCAL. This is one of

the initial attempts to optimize the sizing of HRES system to

minimize the cost of the system. Five sites of Corsica Island, France

were considered by Diaf et al. [34] for the optimal configuration of

Hybrid Photovoltaic and Wind System. It is noted that sites with

lower wind potential have a higher cost of energy. Celik [35] has

developed the methodology for sizing of PV & WT, which finds the

monthly average of resources and adds the standard deviations to
3
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it. It is claimed that for the site under consideration, this method is

the most appropriate. This method doesn’t require the hourly

values of renewable energy resource availability and thus makes

macro analysis only. Saheb-Koussa et al. [36] used a deterministic

approach to optimize the size of HRES for four different sites of

Algeria with detailed modeling of components in MATLAB/Simu-

link with TIC (Total Investment Cost) as criteria taking monthly

averages of solar and wind data.

In most cases, this method can optimize only two parameters of

the system e.g. size of PV and size of WT. The other parameters e.g.

size of the battery, LPSP etc. are decided by the designer using the

experience and physics of the problem. The other parameters,

which are not computed as decision variables in the calculation, e.

g. LPSP, size of the battery etc. can also be found with iterative

procedures by changing their values in the logical range with

entire new calculations. Inherent capabilities of this technique

have led it to be used for HRES sizing for a long time as evident

from Table 1. This method is used for the optimization of HRES

system in developing and developed parts of the world some-time

back. It is used for the remote areas of Canada, Algeria and for

combined heat system in the UK, US and Germany. The purpose of

the HRES in many of these cases is to augment existing conven-

tional sources of energy in many of these cases. This has led

designers to explore the parameters other than the cost of electric-

ity as is evident from Table 1. This technique is simple to imple-

ment and easy to understand. It was used early on by researchers

for the optimal configuration of HRES. The involvement of the

designer’s discretion in deciding certain parameters, while using

this method, gave the way to other methods gradually. The

optimization techniques, which can handle the larger number

of decision variables have gained more popularity nowadays.

Iterative techniques
One of the simple ways to search for the optimal variable values is

to search for them iteratively by calculating possible combinations

of variables and finding corresponding objective function values.

The value of the objective function of successive iteration is

compared with the values of the objective function of earlier

operations. The set of design variable values resulting in the

preferable objective function are retained. The other combinations

of variables are discarded progressively in iterative operations. The

procedures of the iterative search are fine-tuned in many ways,

giving rise to a wide range of numerical techniques. The iterative

techniques have been employed by a number of researchers, the

brief of which is in the following paragraphs.

Isherwood et al. [39] proposed the wind-diesel system for Alas-

kan village among several studied systems including WT-FC. The

solver used is Super Code, the in-house code of National Lawrence

Laboratory. Hocaoǧlu et al. [40] proposed a novel optimization

methodology for Wind-PV-Battery system using alternative and

deterministic approach. They initially found the maximum capac-

ity of the battery by calculation using the total load and solar–wind

potential. Then, the enumerative method is applied to find the

deterministic value of the optimal configuration. Hybrid PV/wind

system for a household residence in Algeria has been optimized by

Kaabeche et al. [41] using DPSP (Deficiency of power supply

probability) and LUEC (Levelized Unit Energy Cost) as assessment

parameters with development of MATLAB program. Kaabeche
4

et al. [42] developed the algorithm for optimal sizing of PV-WT

HRES with the iterative method using MATLAB. They used several

criteria like DPSP, REPG, TNPC and BEDA for a case study at the

CDER, Algeria. Iterative technique is performed by Hossam-Eldin

et al. [43] for PV, WT, BS and DG based HRES for power along with

desalination process. The PV-micro turbine system is designed [44]

for the rural community of Palestine including the PV degradation

with time.

Kaabeche and Ibtiouen [45] optimized the PV-WT-DG-Battery

system for a site in the Algeria reliability of zero total energy deficit

using MATLAB using the iterative technique for given capacity of

Battery and changing the values of the number of PV panels and

wind turbines in a range. It is shown that this system is more

economical compared to the system without DG. Iterative tech-

nique is implemented in MATLAB by Smaoui et al. [46] to optimize

the PV, WT and Hydrogen system with desalination for 14,400

inhabitants. Eltamaly et al. [47] used hybrid-2 architecture and

iterative method in MATLAB to optimize the HRES as per the load

classification of high priority load and low priority load. The

iterative technique is employed by Mohamed et al. [48] in

MATLAB for a site in Saudi Arabia. The results are compared with

HOMER & GA. The iterative technique is employed by Kougias

et al. [49] for PV-small hydro HRES with coding for enumerative

search methodology in the MATLAB. They concluded that calcu-

lated change in azimuth and tilt angle PV panels increases corre-

sponding matching with hydro resources in terms of meeting the

demand properly, despite compromising a bit on the total energy

production from the solar resource. Hosseinalizadeh et al. [50]

studied the four sites in Iran using the developed model and

concluded that FC does not turn up in the optimal system, because

of the high initial cost. RO-MSF based desalination system is

developed for the region of Tehran, Iran by Heidary et al. [51]

using MATLAB environment.

Table 2 presents the publications using iterative techniques for

HRES optimization. For the system with numerous renewable

energy sources and energy storage facilities, the calculation of a

large number of combinations of decisions will require computa-

tional time accordingly. It was seen that, for fairly complex

systems, these may take more computation time compared to

other methods. This method optimizes one objective only e.g.

cost function of the system. Therefore, other decision parameters

like the reliability of the system can be found by the simulation

modeling for the given sizes of HRES components as an additional

parameter. Literature survey shows that this technique is used for

the locations of mainly developing countries like India, China and

countries of North Africa. The size of systems is also not that large,

which means it is used in the case studies of smaller power

requirements. The cost of energy in these studies ranges from

0.1 to 3.5 $/kWh.

Linear programming
The linear programming has evolved since its development in the

first half of the 20th century and is being widely used in the field of

industrial engineering for assignment and root problems. It can

handle linear functions in business models effectively. Many

researchers tried to employ the linear programming method to

the HRES sizing problem. By doing so, one can use well-developed

and robust linear programming techniques in HRES [56] design



TABLE 1

Graphical techniques used for the HRES optimization.

PV WT BS CAES DG Tool used Economic
criteria

Reliability
criteria

GC/SA Architecture Location Power
demand load

Cost Highlights Ref.

p p p p
PT SA Oldenburg,

Germany
10,000 kWh
per year

10.4 years
payback time

A building of the university, not connected to the
grid, consuming 1000 kWh approximately per
year was considered for HRES. Renewable fraction
and payback time are considered for
optimization.

[37]

p p p
PASCAL System

Cost
LPSP SA DC Massachusetts

was, USA
0.14�1.4 kW – 30 year recorded met data is used to size the

HRES system for the typical house in
Massachusetts. The MPPT based model is
implemented in PASCAL and graphs of size of PVs
v/s size of BS are plotted for given LPSP.

[33]

p p p
SEU-ARES SC SA Cardiff, UK 15 W 1�3.6 $/kWh Average size of PV andWTare calculated for every

month of the year. Then the average of the year is
calculated and the standard deviation is added to
it. This is proposed as the size of the equipment,
as an increase in the size beyond this will not yield
much on the reliability against an increase in the
cost.

[35]

p p p p
MATLAB
SIMULINK

TC SA DC Algeria 3.5�4.1 kW 10.8 $/kWh Three sites in Algeria are simulated in MATLAB/
SIMULINK for the sizing of HRES. The site with
higher potential of the wind came out with more
wind turbine numbers in comparison to other
two sites.

[36]

p p p
LCE LPSP SA DC Corsica Island 100�700W 2.1�3.4 $/kWh Five sites of Corsica Island, France are studied for

PV-WT based HRES, with similar solar potential
and varying wind potential. It was observed the
COE of the HRES was better than the
conventional system, especially in the regions of
high wind potential.

[34]

p p p
COE SA AC Quebec, Canada – – WT in conjunction with DG supported by CAES

proves to be saving of 50% for the remote
locations of Canada, where DG is a dominant
source of energy.

[38]
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TABLE 2

Iterative techniques used for the HRES optimization.

PV WT MH other
source

BS FC DG Tool
used

Economic
criteria

Reliability
criteria

GC/SA Architecture Location Power
demand
load

Cost Highlights Ref.

p p p
LCE LPSP SA Guangdong,

China
1000W 0.4�0.5 $/kWh Telecommunication base station with constant

load need, at an island in China, is sought to be
powered by HRES. 2 days of autonomy system
give economically better results.

[52]

p p
LCC SA Kerala, India 20�27 kW 0.1 $/kWh Iterative technique is employed to size micro-

hydro, wind and BS based HRES for a remote
village in India with 120 families. The results show
that reliable and economic power supply can be
provided by HRES.

[53]

p p p
LCE LPSP SA DC Corsica Island 80�320W 0.8�1.7 $/kWh Three sites of Corsica Island are studied for HRES.

It was observed that COE strongly depends on the
renewable potential of the site. In addition to
that, COE increases sharply for very low LPSP with
increased reliability.

[54]

p p p
COST SA DC Shanghai,

China
1.4�2.3 kW 0.9�1.2 $/kWh Fuel cell and BS are coupled with PV for long term

and short term energy storage in HRES.
[55]

p p p
MATLAB LUEC DPSP SA DC Algeria 80�340W 1�3.5 $/kWh PV, WTand BS based HRES is implemented for the

household in Algeria, using local solar and wind
data, for grid autonomous scenario.

[41]

p p p p
COE, COW Egypt 55�70 kW 0.06�0.08 $/kWh Reverse osmosis along with power production

using HRES is studied for the site in Egypt. It was
observed that a further decrease in PV price can
bring the HRES to the grid parity.

[43]

p p p
MATLAB COST SA DC Kerkennah

islands, Tunisia
1050 kW Desalination unit HRES, for desalination plant, for Tunisian island is

sized to satisfy the fresh water requirement of
14,400 inhabitants and tourists coming in.

[46]

p p p p
MATLAB LEC LOLP SA H2 Saudi Arabia 5�27MW 0.35�0.38 $/kWh The load is prioritized as per importance and

bifurcated for the preferential supply in this study.
Five sites in Saudi Arabia are studied for HRES
using MATLAB coding.

[47]
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and sizing, although with initial assumptions in the modeling to

make it a linear model. In addition to that, the availability of

commercial software to solve the linear programming problems

makes it easy to deploy this technique for HRES configuration.

Chedid and Rehman [57] proposed a deterministic approach

using linear programming technique with EENS (Expected energy

not supplied) as reliability criteria for a location of Lebanon with

800 kW load. Both the cases of the Grid-connected and Standalone

system are considered. Linear programming is employed by Zhan

et al. [58] to optimize PV-DG-BS system via power dispatch simu-

lation with coding in MATLAB. Mixed-Integer Linear Program-

ming is utilized by Dai and Mesbahi [59], where CPLEX solver is

employed for programming solution to minimize the cost of

energy. Mixed-integer linear programming [60] based on super-

structure model is proposed for WT, PS and DG based HRES system

at K-island, Taiwan. Algebraic power pinch analysis [61] with

Mixed-integer linear programming is utilized for grid-connected

HRES system for hourly calculations of energy balance.

Linear programming in GAMS software is employed by Huneke

et al. [62] to optimize the HRES design and actual testing of two

sites, one in India and the other in Colombia, with PV, WT, BS and

DG combination. A sparse matrix is used with linear programming

to optimize the energy cost for AC bus based HRES system for the

location in Korea [63]. Grid-connected Combined Heat and Power

(CHP) system is optimized using LP2 model in EnergyPro Software

by Wang et al. [64], where day ahead weather data schedule is used.

Linear programming with superstructure [65] based methodology

is applied to PV, WT and BS based Stand-alone HRES. Optimization

of HRES system with PV-BIO-DG for a rural area of Bihar, India is

done using mixed-integer linear programming with a rolling

horizon scheme [66] to minimize the levelized cost of energy.

The data time series in this study has a time frame as low as 10 min.

Table 3 summarizes the use of linear programming in HRES

optimization. Various forms of linear programming and solvers are

utilized for the HRES sizing. The need for large data handled for

HRES sizing necessitates the use of equation solvers (e.g. GAMS,

CPLEX) or in-house coding for the solution. In addition to that,

one needs to identify the values of the coefficient of variables in

the linear equation. The conversion of an essentially non-linear

model of renewable power production to a linear one, as seen in

the reviewed papers, makes it susceptible to inaccuracies in calcu-

lations. That’s why one should be careful in using linear program-

ming methods for HRES optimal configurations. The HRES systems

with the load ranging from a few kW to several MW scale are

optimized using linear programming in all types of geographies, as

it can be deployed using commercially available software. The cost

of energy forecasted in these studies is also in the reasonable range

of 0.1�0.3 $/kWh.

Other classical techniques
The problem of sizing of HRES is non-linear inherently because of

the non-linear behavior of component characteristics and com-

plex objective function. For example, the variation of output

power from wind turbines is not a linear function of wind speed.

This results in non-linear programming [67] of the optimization

problem for HRES. A variety of non-linear programming methods

have been attempted by the researchers for that aim. The various
ways to solve this problem have been attempted as shown in the

following paragraphs.

Zervas et al. [68] developed the methodology to optimize PV-FC

system and implemented it for the household in Greece using the

fundamental rolling horizon principle of Model Predictive Control

(MPC). This method predicts Global Solar Irradiance (GSI) using

the radial bias function of neural network architecture. Grid-con-

nected PV, WT and storage based HRES system is optimized using

Non-linear programming in GAMS software by Berrada and Lou-

diyi [69]. Jursaz and Ciapaa [70] studied a similar grid-connected

system with a run of the river plant using MINLP in MS-EXCEL

based GRG tool. Belfkira et al. [71] used the DIRECT (DIviding

RECTangles) algorithm to optimize the HRES with 15 kW pick

capacity for the site of Senegal using measured data of solar

radiation, wind speed and ambient temperature for over a year.

The energy hub model is used by Real et al. [72] with Mixed-integer

quadratic programming in MATLAB to optimize the wind – FC –

Battery system.

Tazvinga et al. [73] minimized the cost of PV-DG-Battery system

for a rural community in Zimbabwe considering different load for

weekdays and weekends as well as for summer and winter using

MATLAB. Dagdoughi et al. [74] developed the dynamic decision

model to optimize the system for green building heating pumping

and power requirements using PV, WT, BIO, FPC and Battery for

the municipality in Italy. The multi-objective objective function is

used in this model and is solved using Lingo 10 for the stochastic

demand and supply conditions. Alsayed et al. [75] presented

several multi-criteria optimization methods for HRES with differ-

ent weighing methodologies. Multi criteria analysis used are (1)

Weighted Sum Method (WSM), (2) TOPSIS (Technique for order

preference by similarity with ideal system) and (3) Preference

ranking organization method for enrichment evaluation (PRO-

METHEE II).

Guinot et al. [76] employed SPEA-2 in ODYSSEY tool to optimize

the HRES system with a hybrid architecture, where the effect of

aging in the performance of components is also considered. Erdinc

and Uzunoglu [77] presented the observe and focus algorithm to

minimize the unit cost of energy for the PV-WT-FC-BS system

using MATLAB-Simulink with consideration for component deg-

radation. Yang and Nehorai [78] provided the framework of joint

optimization to configure the multi-storage HRES with DG as a

consensus problem with a calculated example.

Abdullah et al. [79] presented the tradeoff analysis for multi-

objective optimization of HRES system in MATLAB. Distributed

Energy Resources Customer Adoption Model (DER-CAM) is

employed to optimize the grid-connected PV-BS based system

for the research institute building area by Ref. [80]. The Island

in Central Greece [81] is considered for the PV-WT-PS HRES system

whereby surplus energy is used to produce the hydrogen through

electrolyzer, where THESIS and PYTHON tools are employed.

Kasseris et al. [82] presented the economic feasibility of the WT-

FC system for Greek Island. Stochastic multi-integer programming

based on benders decomposition algorithm is utilized for WT and

BS HRES system and it is compared with the results of Gurobi

solver.

The HRES system with desalination is programmed for a village

on the Greek island for seasonal population variation [83] and

subsequent Power and freshwater requirement of the community.
7



TABLE 3

Linear programming used for the HRES sizing.

PV WT BIO MH BS PS Other
storage

DG Tool
used

Economic
criteria

Reliability
criteria

Environment
criteria

GC/SA Architecture Technique
used

Location Power
demand load

Cost Highlights Ref.

p p p p
COE EENS SA/GC LP-Det Lebanon 550�800 kW 0.1�0.16 $/kWh Linear programming based

model for HRES optimization is
proposed. A case study for the
site in Lebanon is presented. The
environmental credit for green
power is included in the
calculations.

[57]

p p p p
GAMS COE SA AC LP India 69�114 kW 0.3 $/kWh Two sites, one in India and the

other in Colombia, are studied
for HRES installation with
proposed method implemented
through General Algebraic
Model Software.

[62]

p p p
CPLEX Solver COE SA MILP USA 1�14 kW 0.13 $/kWh A general model for HRES using

mixed-integer linear
programming is proposed,
which integrates the
management on both sides of
demand and supply.

[59]

p p p
GAMS TC SA LP Taiwan 10�60 kW – Superstructure based linear

program is presented and solved
in GAMS environment for three
different scenarios by
minimizing the outsourced
energy and storage capacity.

[65]

p p p
TES EnergyPro COST GC LP Finland 12�22MW – Linear model for district heating

and power requirement is
developed for the estimation of
the power availability and
reliability. The day ahead forecast
is suggested for accurate
demand and supply side
management.

[64]

p p p p
TSC EE SA AC LP Deokjeok

Island,
Korea

200�1000 kW 0.24 $/kWh Hourly simulation of HRES
supply is executed for the Korean
island using a linear
programming technique. The
load is calculated using
EnergyPro software. The results
are compared with the results of
HOMER.

[63]

p p p
Gurobi LCOE SA AC MILP India 25�120 kW 0.18�0.23 $//kWh HRES system based on ORC by

solar and DG by bio gasifier is
studied for the rural region of
India.

[66]

p p p
COE NPV GC MILP Malaysia 60 kW 0.1 $/kWh Mixed-integer linear program is

presented and applied for the
residential area and industrial
area. Lead-acid batteries are
favoured over super capacitors,
owing to their economics.

[61]

R
ESEA

R
C
H

 R
EV

IEW
 

Ren
ew

ab
le

 En
erg

y
 Fo

cu
s
�Vo

lu
m
e

 39,
 N
u
m
b
er

 00
�D

ecem
b
er

 2021

8

RESEARCHREVIEW



TABLE 4

Other classical techniques for sizing of HRES.

PV WT BIO MH FPC BS FC PS Other
storage

DG Tool
used

Economic
criteria

Reliability
criteria

Environment
criteria

Social
criteria

GC/SA Architecture Technique
used

Location Power
demand
load

Cost Highlights Ref.

p p
GAMS TC GC DC MINLP Athens,

Greece
0.1�1 kW 0.63�1.64 $/kWh HRES with hydrogen as

energy storage media and
solar PV is modeled as non-
linear program. The
prediction of solar radiation
is based on neural network
training. Case study for the
household in Athens is done.

[68]

p p p
MATLAB Cost SA MIQP Spain 100�550W 12�16 k$ Energy hub concept is

employed to size WT, BS and
FC based HRES along with
sensitivity analysis.

[72]

p p p p
TC SA DC DIRECT Senegal 4�15 kW 388 ks The case study of the site in

Senegal is presented for the
sizing PV, WT and BS system
using a divided rectangle
deterministic method of
optimization.

[71]

p p p p
MATLAB
SIMULINK

ACS UCEE SA/GC O&F Turkey 18�52 kW 2.2 $/kWh Observe and Focus
algorithm is applied to
optimize the HRES, where
the effect of decreasing
efficiency of the system

[77]

p p p p
LINGO 10 Energy from

grid
GC+ SA MPC Italy 1.3�2.3 kW – Dynamic decision model for

optimal energy
management for HRES with
or without storage is
developed to satisfy the
power, heat and water needs
of the building. The cost of
energy of the system with
storage comes out to be
better.

[74]

p p p
TC SA B&B USA 1.2�2.8 kW 7178 $ Branch and bound method

coupled with generalized
reduced gradient method is
used to optimize the size of
HRES with details of different
parameters used.

[88]

p p p
TC SA PoPA Malaysia 81 kW – Power pinch analysis is

extended to include the
losses in HRES for optimal
sizing of the components of
the system as a powerful
visualization technique.

[89]

p p
Bender’s
decomposition
algorithm

COE SA MIP USA 32�50MW – Constrained stochastic
problem is solved using
Benders decomposition with
Pareto-optimal cuts using a
modified Magnanti-Wong
method and maximum
feasible subsystem
generated cuts.

[90]
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TABLE 4 (Continued )

PV WT BIO MH FPC BS FC PS Other
storage

DG Tool
used

Economic
criteria

Reliability
criteria

Environment
criteria

Social
criteria

GC/SA Architecture Technique
used

Location Power
demand
load

Cost Highlights Ref.

p p p
MATLAB Fuel cost SA Quadratic South Africa 1.2–3.8 kW – Fuel consumption is

minimized considering
different load profiles for
weekdays and weekends as
well as for summer and
winter seasons.

[73]

p p
COST Emission

reduction
Social
acceptance

GC PROMETHEE Italy 48�200 kW 0.11�0.13 s/kWh Three types of multi-
objective optimization
techniques are used to
optimize the HRES. WSM,
TOPSIS and PROMETHEE-2.
The social acceptance model
is formulated and is
considered as an assessment
parameter.

[75]

p p p p p
CVX TOOLBOX TC SA ADMM USA 0.6�1.8MW 5�32M$ Joint optimization model for

the combined optimization
of HRES with storage is
presented and applied for
three sites in the US with
different climate patterns.

[78]

p p p
ODYSSEY COE MDPFT SA H1 SPEA 2 Nigeria 15�130 kW 0.8�0.85 s/kWh Three combinations PV-DG,

PV-BS and PV-BS-FC are
evaluated. PV-BS-FC comes
out to be better than PV-BS,
because of high-cost
batteries. It is shown that
with increase in the cost of
diesel, it can also become
competitive in comparison
to PV-DG.

[76]

p p p
MATLAB LCE ERED EEE GC H2 ToA Australia 1.05�1.8MW 0.13�0.19 $/kWh Multi-objective optimization

includes the life cycle cost
for the calculation of
embodied emissions of
energy and expected
renewable energy deficiency
as reliability criteria.

[79]

p p p p
THESIS PYTHON OC SA Dynamic Greece 4�7MW – Surplus energy generated

from the solar and wind is
stored in pumped hydro and
remaining goes to
electrolyzer for the
production of hydrogen in
the proposed HRES for Greek
island. The solar and wind
supply almost equal energy,
which is an indicator of very
good complementarity.

[81]

p p p
GAMS COE GC H1 NLP Morocco 50�80 kW 0.1�0.7 $/kWh Operational strategies and

sizing methodologies for
storage systems to be used
for HRES are evaluated.

[69]
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Lindo Software is utilized to minimize the cost of energy from the

HRES system for Greek Island [84]. For the remote location of

Quebec province, Canada, Ibrahim et al. [38] developed the Wind-

diesel generator model, which also uses the turbocharger. Pneu-

matic hybridization of HRES comprising WT, DG and CAES is

presented by Basbouse et al. [85] with detailed modeling of IC

engine, where the air/fuel ratio is optimized for minimum fuel

consumption. CAES is considered in a limestone cavern. Multi-

objective linear programming is used to optimize the grid-con-

nected tri-generation plant with PV, DG and boiler by Brandoni

et al. [86]. A binary search algorithm is utilized by Ayodele et al.

[87] for standalone system in Nigeria with consideration of differ-

ent seasonal load for the combination of PV, WT and hydrokinetic

system.

Table 4 shows the variety of other classical techniques utilized

for the optimal configuration of the HRES system. It can be seen

that choice of the technique depends on the complexity of the

problem formulated and the amount of computational resources,

skill-sets and time to be invested in the optimization process. As it

is observed, the mixed-integer non-linear programming, codified

in suitable software, proves to be the appropriate technique to

optimize HRES configuration among classical methods. The HRES

system optimization problem is essentially non-linear in nature.

That’s why non-linear programming techniques have been used

for very small systems to up to 50 MW size of HRES system all over

the world using a variety of numerical tools.

Modern optimization techniques for HRES sizing
Artificial intelligence techniques try to utilize the principles

behind natural biological processes for machine learning pur-

poses. Several techniques have been developed in this area, which

try to capture the natural evolutionary and other biological pro-

cesses mathematically. These techniques do not require large

computation time due to their inherent capacity to search for

the optima in all the direction with quite a randomness. Apart

from that, they can handle many parameters simultaneously,

which makes them suitable for multi-objective problems with

conflicting objectives [91].

Genetic algorithm
Genetic algorithm utilizes the principle of the survival of the

fittest, mimicking the regenerative process followed by the bio-

logical species to adapt to their environment. This population-

based search technique uses selection, crossover and mutation

operators [92] for the enhancement of quality of population in the

next generation. The selection operator chooses the individuals in

the current population to be maintained for further consideration

based on the fitness function criterion. These remaining popula-

tion members (variable strings) are then brought into the mating

pool and crossover takes place, mimicking the combination of

DNAs of male and female. These crossed over strings are then

mutated randomly. Thus, it processes the population of multiple

values of variables in a single iteration of search. It results in search

for fairly large search space and improve the average fitness of the

population rapidly. The robustness [93] of the genetic algorithm in

the handling of the multimodal and non-differentiable objective

functions is well-known. The issue of preservation of good
11
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addressed in the improvisation developed like NSGA II [94].

Dufo-Lopez and Bernal-Agustı́n [95] developed Hybrid Optimi-

zation by Genetic Algorithm (HOGA) in C++, which as per their

claim, is more nuanced and precise than HOMER in certain

aspects. The genetic algorithm is utilized [96] to optimize PV-

WT-BS system for telecommunication relay station on the

south-east coast of China. Markov model-based GA is utilized

for optimization of PV, WT and DG based HRES by Hong and

Lian [97], where Fuzzy-c-means is used for uncertainty incorpo-

ration. Two sites, one from Germany and the other from Syria, are

studied for the installation of HRES using GA in MATLAB/Simulink

to minimize the NPV with 10 min interval input data by Merei

et al. [98]. PV, WT and BS based HRES is studied for small Greek

island by Vrettos and Papathanassiou [99] using the weighted sum

method with GA in MATLAB toolbox for minimization of LEC. Ma

et al. [100] optimized solar-wind-pumped storage system using

LPSP and COE as assessment criteria for the island of Hong Kong

using double objective optimization. Due to typhoon sustaining

costly wind turbines, the optimal configuration has only one wind

turbine. Optimization of HRES with DG is done [101] using a

multi-objective system with Monte Carlo simulation. It is empha-

sized that cost, as well as reliability, is essential criteria for the

sizing HRES.

Seeling-Hochmuth [102] has developed a model using a genetic

algorithm to optimize the size and operational strategy of HRES

with DG using LCC as design criteria. PV, WT and BS HRES system

for telecommunication relay station on the south-east coast of

China was sized using GA [96] and was constructed for 1.3 kW of

AC load and 200 W DC load. The load profile considered is almost

constant unlike for the inhabitant usage. Poullikkas et al. [103]

employed GA to study the RE penetration in the grid with cost

calculation. Gonzalez et al. [104] came up with the algorithm to

optimally size the grid-connected PV-WT system using GA for a

rural township in Catalonia, Spain. HOGA (Hybrid Optimization

by Genetic Algorithms) program is used by Carroquino et al. [105]

for the drip irrigation system in the Mediterranean region for least

net present cost. They concluded that an energy storage facility

other than a battery is required for seasonal energy storage. A

genetic algorithm is employed by Al-Shamma and Addoweesh

[106] for the sizing of PV-WT-FC-BS-DG based HRES at a rural site

in north Saudi Arabia using MATLAB. The results are compared

with the HOMER. Tawfiq et al. [107] have employed the iHOGA for

the desalination plant in Egypt to overcome the issue of mismatch

between load demand and renewable energy supply.

It can be observed from Table 5 that the Genetic Algorithm and

its variants remain the most used evolutionary artificial techni-

ques to be employed for the optimal sizing of the HRES. The

genetic algorithm finds the global optima with relatively small

computation time for the multi-objective and multi-variable opti-

mization problem, which is encountered in the HRES system with

multiple energy sources like solar energy, wind energy, bioenergy,

hydro energy etc. with different energy storage techniques like

battery system, an electrolyzer-hydrogen-fuel cell combination

etc. This type of problem may also be evaluated for their environ-

mental impact and social impact. This renders them as the multi-

objective problem in addition to multiple decision variables. The

versatility of the genetic algorithm and its robustness in finding
12
optimal configuration makes it a suitable candidate to be used for

the HRES. As is evident from the research papers reviewed, GA and

its variants, especially NSGA-II have gained the confidence of the

research community in the HRES field. GA is utilized to optimize

the HRES sizes ranging from 300 W to 90 MW for different areas

throughout the world, which is the evidence of the capabilities of

technique to handle a large variety of problems.

Particle swarm optimization
Particle swarm optimization (PSO) was proposed by Kennedy and

Eberhart [120] in 1995 as an alternative to GA and to overcome

certain difficulties faced by evolutionary algorithms. It has gained

popularity among the researchers ever since. Each variable, called

particle, is allowed to move with a certain speed in the space for the

search of the best value of that variable. The code also records the

global best value for finding out the final solution. The PSO

employs the memory aspect [121] of the population of solution

variables to avoid the escape of the near-optimal solutions found

during the swarm movement. The PSO tries to mimic the certain

biological species, which migrate and search for the food in flocks

and individual variable of the population is emulated as the

member of the swarm [122].

A constrained mixed-integer multiobjective PSO (CMIMOPSO)

is presented by Wang and Singh [123] for optimization of grid-

connected PV, WT and BS system implemented in C++, where the

stochastic nature of wind is also considered. Hakimi and Moghad-

das-Tafreshi [124] utilized PSO for optimization of WT and BIO

HRES system with Hydrogen as storage career for the village of

2000 people in the south-east coast of Iran. They considered two

load scenarios, one of which considers the variable nature of the

load. PV, WT, FC and BS based HRES for poly-generation in a small

island of Greece is studied using PSO by Kyriakarkos et al. [125]

using MS-EXCEL based VBA macro.

Mohammadi et al. [126] optimized the grid-connected PV, WT

and BS based HRES for TNPC using PSO. MOPSO is employed [127]

for PV, WT, BS and DG based HRES system for COE, LPSP and RF in

MATLAB. The HRES system for the site of Uttarakhand state, India

is assessed by Upadhyay and Sharma [128] using PSO for EENS,

NPC, COE, RF and CO2 emissions. PV-WT based HRES system is

modeled and sized [129] using MATLAB with PSO, where TIC and

LOLP are assessment parameters for the location of Riyadh, KSA.

The PSO is employed to minimize the levelized cost of energy by

Amer et al. [130]. Solar and bio based hybrid system is used to fulfill

thermal demand of a town in India by Wagh and Kulkarni [131].

Superiority of dynamic PSO over traditional solvers is demon-

strated by Singh et al. [132] with the case of fulfillment of different

seasonal loads.

Table 6 indicates that Particle swarm optimization algorithms

are at par, if not more, in popularity among the researchers in

terms of their usage for the optimal sizing of HRES systems. The

number of research publications on optimal sizing of HRES using

PSO and its variants is increasing lately. The variants of PSO like

Dynamic Multi-objective Particle Swarm Optimization are used by

the research community to make it more adaptable to multi-

objective HRES problems. It has also been used to compare the

results of other algorithms [133]. Part of the reason for its popu-

larity is its ability to arrive at an optimal solution with relative

simplicity. From the literature survey, it is observed that the



TABLE 5

Use of GA based algorithms for HRES optimization.

PV WT BIO BS PS DG Tool
used

Economic
criteria

Reliability
criteria

Environment
criteria

GC/SA Architecture
(BUS)

Optimization
technique
used

Location Power demand
load

Cost Highlights Ref.

p p p p
MATLAB
TOOLBOX

LEC SA AC GA Greece 307 kW 0.48�0.60 s/kWh HRES is proposed as a replacement of DG
only system for the very small Greek
island using the lead-acid battery for
energy storage. It was concluded that
renewable penetration up to 60 can be
achieved without an increase in the cost
of the energy.

[99]

p p p
NPC SA AC Tunisia 13.35 kWh/day – HRES is proposed to be used for the

desalination purpose with PV, WT and BS
for the site in Tunisia. Five different
scenarios with different combinations of
the components are considered. Cost of
water output is minimized using GA. The
results are compared with HOMER.

[108]

p p p
TIC LPSP SA H1 Adaptive GA Taiwan 0.3�1.6MW – Two sites in Taiwan are considered for the

case study of HRES optimization using
AGA. The results are found to be strongly
influenced by the weather pattern of the
site.

[109]

p p p
MATLAB
TOOLBOX

COE SA H2 GA Malaysia 0.5�5 kW 0.24�0.34 $/kWh Three different combinations of HRES are
explored for a rural Malaysian site using
GA. The PV-BS-DG comes out to be the
most economical.

[110]

p p p
MATLAB
TOOLBOX

SC GC DC NSGA II Texas, USA 42�62 kW 1�1.8 M$ Multi-objective optimization of HRES is
done using 10-second temporal
resolution of power generation and is
compared to hourly computation results.
It was concluded that higher temporal
resolution reflects the nuances of power
interaction better and provides a better
controllability power flow.

[111]

p p
LCOE GC GA Greece 35�90MW 0.14�0.17 s/kWh The power supply system of a Greek

island is proposed to be augmented with
Wind Turbine and pumped hydro storage
based HRES. It was concluded at lower RE
penetration, this can lead to lower COE.

[112]

p p p
MATLAB LCC LPSP EE SA DC Controlled

elitist GA
France 300 kWh/

month
LCC $ 32,471 Embodied energy in HRES is also

considered as assessment criteria for
environment concern in addition to cost
and reliability criteria using half-hourly
renewable potential data. This study
used the variant of NSGA-II.

[113]

p p
MT MATLAB

TOOLBOX
COE LLP SA H1 GA Palestine 5�20 kW 0.26�0.39 $/kWh PV and BS based system is proposed to

be augmented by microturbine for
Palestinian site, where cycle strategy with
co-generation proved to be more
economical, although not at par with
grid power, if the emission cost and
transmission line extension cost is not
considered.

[114]
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TABLE 5 (Continued )

PV WT BIO BS PS DG Tool
used

Economic
criteria

Reliability
criteria

Environment
criteria

GC/SA Architecture
(BUS)

Optimization
technique
used

Location Power demand
load

Cost Highlights Ref.

p p p p
MATLAB COE LPSP RF SA H1 GA Saudi Arabia 50�350 kW 0.18�0.23 $/kWh Nine different HRES combinations are

evaluated for the remote Saudi Arabian
village. It was found that the COE
increases very fast with RF at high
renewable penetration.

[106]

p p p p
HOGA NPC SA GA Spain 6�20 kW 0.13�1.08 s/kWh Pumping power requirement of Spanish

agrarian use is sought to be fulfilled by
the HRES. The irrigation need is mainly in
the summer, when wind speed is not
high. That’s why the optimal
configuration has PV, BS and DG, leaving
out the WT.

[105]

p p p
TC DPSP SA NSGA II UK 0.5�4 kW 0.01�0.7 M$ TC Uncertain input of solar and wind energy

is incorporated using chance-
constrained programming and
compared with Monte-Carlo simulation.

[115]

p p p
MATLAB Fuel use SA GA UK 0.2�7.8 kW – Short term forecast of wind speed and

load demand are proposed to be
included in the DG operation strategy
using GA in MATLAB/Simulink to improve
the economics of the HRES and increase
the DG lifetime.

[116]

p p p
ACS LPSP SA DC MOGA Greece 100�1000W 37.5 ks HRES for the Greek household is modeled

and optimized with multi-criterion
methodology.

[117]

p p p
ACS LPSP SA GA China 1500W 10.6 k$/yr Cost and reliability of the HRES are

simultaneously optimized including the
height of wind turbine and tilt angle of
the PV for Hong Kong island.

[118]

p p p
NPC SA H2 HOGA Bangladesh 300�1200W 49ks NPC PV-BS-DG based HRES is proposed for the

fishermen village in a remote island in
Bangladesh.

[119]
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TABLE 6

PSO based studies of HRES.

PV WT BIO MH Tidal BS FC Other
storage

DG Tool
used

Economic
criteria

Reliability
criteria

Environment
criteria

GC/SA Architecture Optimization
technique used

Location Power demand
load

Cost Highlights Ref.

p p p
NPC ELF SA PSO Iran 220�800 kW 43.85 M$ Different types of loads like

residential, industrial,
agricultural and office load are
considered with different
reliability needs. The increase in
the load in the future is also
forecasted and the increase in
the PV, WT and FC capacity is
suggested along with the life of
the project.

[134]

p p p p p
C++ TCS UL CE SA e constraint

PSO
Spain 0.4�4.4 kW 95�140 ks Multiobjective optimization is

carried out using e-constraint
PSO coupled with simulation
module and sensitivity analysis is
also performed for HRES with
hydrogen production and
utilization system for energy
storage mechanism in addition
to the battery.

[135]

p p p p
LCOE PRSP SCC SA PSO India 70 kW 0.41�0.62

$/kWh
A case study of the site in India is
performed to find out an
optimum mix of resources of
HRES. PV, WT and BS was found
better economically using dual
reliability constraint test.

[136]

p p p p p
C++ NPC UL CE SA DMOPSO Spain 0.4�4.4 kW 57�165 ks Dynamic multi-objective PSO is

demonstrated for the
optimization of HRES with a case
study of Spanish site. The results
are compared with MOGA,
MOPSO and e constraint
method. The CO2 emission is also
considered as the assessment
parameter.

[137]

p p p
MATLAB LCC LPSP SA DC Adaptive inertia

based PSO
Iran 0.5�4.7 kW 68 k$ Five variants of PSO are applied

for HRES optimization for the site
in Iran. Adaptive inertia weight-
based PSO comes out to be
better among them with
minimum life cycle cost
comprising PV, WT and BS.

[138]

p p
MATLAB NPC, COE CE SA DC PSO Australia 3.5 kWh/day 25�65 k$ HRES to feed load demand along

with desalination requirement of
potable water is optimized using
multi-objective PSO (including
cost and emission) for west
Australian site and is compared
with HOMER analysis.

[139]
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TABLE 6 (Continued )

PV WT BIO MH Tidal BS FC Other
storage

DG Tool
used

Economic
criteria

Reliability
criteria

Environment
criteria

GC/SA Architecture Optimization
technique used

Location Power demand
load

Cost Highlights Ref.

p p
C++ NPC LLP CE SA DMOPSO Canada 10�100MWh /

month
500�1000 k
$

Sampling average method with
synthetic data generation is used
to incorporate uncertainties in
the solar, wind and load data for
the multi-objective optimization
of HRES. A case study of a
building in Canada is performed
for the minimization of
renewable fraction, emission and
cost.

[140]

p p p
TS C++ NPC CE, RER GC DMOPSO Canada 10�100MWh/

month
383�957 k$ HRES for power, heating and

electric vehicle of the apartment
building in Canada is analyzed
using DMOPSO. PV panels, solar
collector and heat pump don’t
show up in the optimized
solution, which is dominated by
wind turbine, heat storage and
biomass boiler.

[141]

p p p
LCOE RP H2 iPSO Singapore 0.4�1.2MW 0.29 $/kWh HRES for the tropical climate is

optimized for different
renewable penetration levels
using distributed mutated PSO
and is benchmarked against
standard PSO and intermediate
mutated PSO.

[142]

p p p
MATLAB TA SA DC PSO Iran 2�7.5 kW 9.5 k$ Monte Carlo simulation is

utilized to incorporate the
uncertainty in wind speed and
solar radiation along with PSO to
optimize the HRES for the site in
Iran.

[143]

p p p p
MATLAB NPV EIR CE GC IEEE-69 i-MOPSO Spain 9.22 kWh/day 45 k$ Three objective optimization of

HRES using PSO with non-
dominated Pareto front is
presented for the site in Spain.
The DG size is not considered for
optimization.

[144]

p p p
MATLAB ACS LLP CE SA H2 PSO Algeria 0.5�2 kW 17.4 k$ HRES for the site in Algeria is

sized using PSO for cost,
reliability and environment
criteria. Results are compared
with HOMER results. DG required
for the months with low solar
radiation availability.

[145]

p p p p
COE LPSP RF SA AC MOPSO Sweden 2�2.8 kW 0.24 $/kWh Twelve locations in rural Sweden

are studied for the HRES
including the PV, WT, BS and DG
using MOPSO. It is noted that
high renewable fraction can be
achieved with a varying range of
LPSP even for these very high
latitude sites.

[146]
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TABLE 7

Artificial intelligence techniques used for HRES optimization other than GA and PSO.

PV WT BIO MH BS FC PS Other storage DG Tool
used

Economic
criteria

Reliability
criteria

Environment
criteria

Social
criteria

GC/SA Architecture Optimization
technique used

Location Power
demand load

Cost Highlights Ref.

p p p
C++ TC DSR SA Evolutionary

algorithm
Greece 500 kW 2.07 s/m3

of RO water
Evolutionary algorithm-
based code is employed to
simulate the desalination
plant run by solar, wind and
pumped storage
combination. The optimal
system gives the economic
potable water with a
substantial waste of
renewable energy.

[150]

p
CAES SC OPTQUEST TC GC SD-AB USA 10�75 MW – System dynamics and agent-

based code is developed for
optimal size and operation
of HRES with broad analysis
at the national level and
detailed work for the local
conditions. The solar
radiation is presumed to
resemble historical data with
January and Jun as base
months for the case study of
a site in Arizona, USA.

[167]

p p
MATLAB,
simulation in
PSCAD-EMTDC

COE LPSP SA H1 ANFIS Malaysia 0.5�5 kW 11.5 k$ Adaptive Neuro-Fuzzy
Inference System is
employed to optimize the
HRES for the site of Malaysia,
where validation is
performed using PSCAD.

[151]

p p p p
C++ LEC ULF SA DC Evolutionary

algorithm
Sri Lanka 3.5�7.5 kW 0.3�0.6

$/kWh
DG integrated HRES for the
Sri Lankan site is optimized
using an evolutionary
algorithm for levelized
energy cost and unmet load
factor. It was observed that
additional DG capacity
reduces storage
requirement with better
reliability.

[168]

p p p p
LEC ULF WRE SA DC MOEA Sri Lanka 3.5�7.5 kW 0.32�1.04

$/kWh
Multi-objective steady
e-state evolutionary
algorithm is utilized to
optimize four objectives of
HRES. MCDM is utilized to
shortlist the components
from the pareto front by
Fuzzy TOPSIS.

[169]
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TABLE 7 (Continued )

PV WT BIO MH BS FC PS Other storage DG Tool
used

Economic
criteria

Reliability
criteria

Environment
criteria

Social
criteria

GC/SA Architecture Optimization
technique used

Location Power
demand load

Cost Highlights Ref.

p p
MATLAB TAC SA DHS Iran 1.1�2.9 kW 7.2 k$ Discrete Harmony Search

method is presented for the
optimization of HRES, which
can effectively handle
discrete variable like no of
wind turbine. This algorithm
can produce results in a very
short time.

[153]

p p p p
LCE, ICC GHG SA DC e-state evolutionary

algorithm
Sri Lanka 3.5�7.5 kW 0.25�0.45

$/kWh
Steady e-State Evolutionary
Algorithm is utilized to get
pareto front of the three
objectives for HRES namely
Levelized energy cost, initial
capital cost and greenhouse
gas emissions. The case
study of the site in Sri Lanka
is presented.

[170]

p p
TC EENS SA Pattern search USA – 6.7�10.6 M

$
Autoregressive moving
average method is used to
consider uncertainty in solar
and wind resources and
demand load. Pattern search
in combination with
sequential Monte Carlo
simulation method is
employed to optimize the
system cost and reliability.

[154]

p p p p
ACS LPSP Fuel

emission
SA PICEA Spain 23�55 kW 3�11 k$ Preference inspired co-

evolutionary algorithm with
goal vectors is utilized to
optimize the HREs for a rural
site in Spain. The slope angle
of the photovoltaic panel
and the hub height of wind
turbine are also found along
with the size of component
for optimal cost, reliability
and emission.

[152]

p p p
MATLAB TAC LPSP SA DC ABSO Iran 2�7.5 kW 56 k$ PSO, TS, IPSO, IHS, IHSBSA

and Artificial Bee simulation
optimization are applied to
optimize the HRES for the
site in Iran. The ABSO gives
better results in comparison
to other techniques used.

[155]

p p p
A-STRONG ETC Simulation

optimization
Taiwan – – A stochastic trust-region

response surface method in
combination with Monte
Carlo Simulation is proposed
to be used to size the HRES.
The results are compared
with simulated annealing
and Nelder-Mead simplex
method.

[171]

R
ESEA

R
C
H

 R
EV

IEW
 

Ren
ew

ab
le

 En
erg

y
 Fo

cu
s
�Vo

lu
m
e

 39,
 N
u
m
b
er

 00
�D

ecem
b
er

 2021

1
8

RESEARCHREVIEW



TABLE 7 (Continued )

PV WT BIO MH BS FC PS Other storage DG Tool
used

Economic
criteria

Reliability
criteria

Environment
criteria

Social
criteria

GC/SA Architecture Optimization
technique used

Location Power
demand load

Cost Highlights Ref.

p p p p
MATLAB COE EENS LLP SA BBO India 52�180 kW 0.15 $/kWh Wind and solar resources

used for the optimization of
HRES are based on the
forecasted data from an
artificial neural network
trained by back propagated
code. The sizing is optimized
using biogeography based
optimization method for the
case of the site in India.

[156]

p p
TLCC, LCOE SA Heuristic Algorithm Nicaragua 1.75 kW 0.838

$/kWh
The Greedy Randomized
Adaptive Search Procedure
is used to size the HRES for
the Nicaraguan site for a
small rural community with
detailed wind flow analysis.

[157]

p p p
VB.net in
MATLAB

TC SA AC ACO Iran 1.2�2.9 kW 6.7 k$ Ant colony optimization
with continuous domains is
deployed for HRES design for
the site in Iran. The
simulation results are
compared with GA ABC and
Branch & Bound method.

[158]

p p p p
NPC HDI, JC SA AC MOEA Sahrawi

refugee camps,
Tindouf

1�14 kW 0.21�0.56
$/kWh

Multi-objective evolutionary
algorithm is presented for
the pareto front of HRES to
minimize the net present
cost human development
index and job creation for
the refugee camp in Africa.
Photovoltaic control is
proposed to be achieved by
a secondary code, which
uses genetic algorithm.

[160]

p p p
MATLAB LCC LPSP SA DC ABSO Iran 2.2�5.5 kW 3.8�8.4 M$ The potable water along

using reverse osmosis with
power load requirement is
proposed to be met by the
HRES using hydrogen as a
storage medium for the site
in Iran. The system is
optimized using artificial bee
swarm optimization for
different reliability levels.

[161]

p p p
MATLAB TSC LOLE EENS SA H1 Cuckoo Search India 3�21 kW 10 k$ Cost and reliability of HRES

for the site in the
Uttarakhand state of India is
optimized using the cuckoo
search with levy flights. The
results prove to better than
GA and PSO.

[172]
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coding PSO algorithm is generally done using MATLAB or C++.

PSO is utilized to optimize the HRES of various capacities of up to

MW scale as evident from the literature surveyed.

Other evolutionary algorithm
The classical techniques of optimization generally use the gradient

information to determine the search direction or some search

technique [147] with certain conditions to determine the path

and direction to follow during the process. These techniques

generally bring in a single value of decision variables to optimize

the mono-objective problem. The evolutionary algorithm techni-

ques are a step apart from them in the sense that they evaluate

multiple values of decision variables in the form of population.

This ensures the possibility of getting good diversity in the deci-

sion variable outcomes in addition to the optimal value for the

multi-objective problems [148]. The following passages summarize

the use of evolutionary algorithms other than GA and PSO for the

optimal configuration of HRES.

Ananostoplous and Papantonis [149] designed the wind-based

hybrid system with a hydro-power pumping station as storage.

Simulations are done for a one-year duration with a frequency of

10 min. Three different types of pump configurations are tested

and the variable speed pump system is proved as most cost-

competitive. The desalination system using PV, WT and PS is

optimized [150] using EA based software by the National Technical

University of Athens. It was observed at that time that a reduction

in the cost of PV can lead to economics in favor of these type of

systems. ANFIS (Adaptive Neuro-Fuzzy Inference System) is pre-

sented for the PV and WT based HRES by Rajkumar et al. [151] in

MATLAB. They used the Gaussian membership function to back

propagate the data and results are compared with the HOMER and

HOGA.

Preference inspired co-evolutionary algorithm (PICEA) is sug-

gested for the least ACS and LPSP for the location of Spain by Shi

et al. [152] and has been validated through simulation. The results

are also compared with GA & PSO. Discrete harmony search (DHS)

is utilized by Askarzadeh [153] for the minimum total annualized

cost in MATLAB for the site of Iran. Sequential Monte Carlo

Simulation is proposed [154] to calculate the reliability along with

pattern search method for the optimization of PV-WT system and

Autoregressive Moving Average Method is used to include the

uncertainty in input data. PV, WT and BS based HRES is optimized

by Maleki and Pourfayaz [155] several evolutionary algorithms for

TAC and LPSP in MATLAB, where ABSO was found robust among

studied algorithms. Biogeography based optimization is executed

by Gupta et al. [156] PV-WT-DG-BS based HRES for given EENS in

MATLAB and Artificial neural network (ANN) is used for forecast-

ing of wind and solar potential. A heuristic algorithm is employed

by Ranaboldo et al. [157] for the site of Nicaragua, where the type

and number of WT and PV panels are optimized. Fetanat and

Khorasaninejad [158] proposed ACO with integer programming

for PV, WT and BS based HRES optimization to minimize the total

cost of the system. The results are compared with the ABC, GA and

B&B.

Singh et al. [159] used ABC for the PV-WT-BIO-BS HRES system

optimization in MATLAB for a site near Patiala, India. The results

were compared with HOMER and PSO. The multi-objective evolu-

tionary algorithm is employed by Dufo-Lopez et al. [160] for



TABLE 8

Hybrid techniques employed for the HRES optimization.

PV WT BIO BS FC PS DG Other
source

Tool used Economic
criteria

Reliability
criteria

Environment
Criteria

GC/SA Architecture Optimization
technique used

Location Power
demand
load

Cost Highlights Ref.

p p p p p p
COE UL SA SA+TS Greece 120 kW 0.2 s/kWh Simulated annealing is used to

derive the feasible solution,
which is fed to Tabu search. The
Tabu search has an inherent
capability of descent gradient,
which makes this hybrid
technique potent to be used.

[180]

p p p
MATLAB NPV SA PSO and QP Iran 1.5�5MW 22�2 M$ Quadratic program finds the

optimal dispatch management
strategy for least net present
value. Then, PSO finds optimal
sizes of components of HRES.

[181]

p p p
CIPLEX IC GC Heuristic

preselection and
superstructure

Croatia 0.2�1.8MW 26 Ms HRES for Croatian island is
studied with hybrid
optimization. The stochastic
heuristic technique is employed
at the initial stage. The
remaining search space is
screened by the super structure-
based method. This gives better
results with less time in
comparison to conventional
techniques.

[182]

p p
Cost Modified Cuckoo

Search & differential
algorithm

Iran – 10 k$ Cuckoo search is modified by
making Levis flight dynamic
along with a differential
algorithm to make it capable of
creating pareto front for the
HRES.

[183]

p p p
Fluent for
tilt angle

PBT LPSP SA Flower pollination
algorithm and
Simulated
Annealing

Iran 0.35�
2.25 kW

12�14 years Hybrid method combining
flower pollination simulated
annealing is used for the HRES of
three flour building in Iranian
capital city. The tilt angle of the
PV panel is optimized using for
the wind turbine using
computational fluid dynamics.

[176]

p p
GT MATLAB Cost Power Loss CE SA ACO+ABC Iran 3.7MW – Artificial bee colony algorithm is

used to search the location HRES
and ant colony optimization for
the sizing of the components.
The point estimation method is
employed to incorporate the
uncertainty in the wind speed.

[177]
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assessment of net present cost, human development index and job

creation with HRES based on PV-WT-BS-DG for the refugee camp

in Algeria, Africa. Life cycle cost of PV, WT and FC system with

LPSP OF 0%–10% is studied using Artificial Bees swarm algorithm

[161] in MATLAB. Cuckoo search is used to optimize PV, WT and

BS based stand-alone HRES for total system cost and energy

expected and not supplied in the MATLAB [162]. The results are

compared with the GA and PSO. Heydari and Askarzadeh [163]

proposed the harmony search for the optimization of PV-BIO

HRES with LPSP and TNPC as assessment criteria in the MATLAB

for agriculture wells in Iran. PV and BIO based [164] HRES with AC-

bus are optimized using ABC for hourly performance for the site

near Patiala, India and the results are compared with HOMER.

HRES based on PV, WT, BS and DG is studied using Taboo search

[165] for minimization of COE in MATLAB. Differential evolution

and chaos theory based methodology for the optimal operation of

hybrid plants is reported by Mandal and Mandal [166].

As is evident from Table 7, a variety of evolutionary algorithms

other than GA and PSO are employed for the HRES design and

optimization. Simulated annealing, harmony search, flower polli-

nation algorithm are among them. There is a clear trend of novel

techniques being implemented in this field. It is due to the rise in

the number of research efforts as the field of the evolutionary

algorithm itself, which is evolving very fast aided by allied fields of

computer sciences. Evolutionary algorithms are being employed

to optimize HRES sizing by the researchers especially in developing

countries as evident from the literature survey. Remote areas of

India, China and Iran including Greek islands are considered for

the case studies using these techniques. Researchers are increas-

ingly looking for applications other than electric power consump-

tion for the HRES. The areas like electric vehicle integration in

HRES microgrids are emerging fields to explore as per the latest

trends in publications on HRES optimization.

Hybrid techniques
The classical techniques are better in finding local optimal values,

as they generally move in the direction of local gradient in search

space. The meta-heuristic techniques are better in converging

towards global optima, because of their population based search

in addition to go-everywhere approach. The relative strengths of

conventional and artificial techniques can be combined by apply-

ing them together in sequence. Initially, the population based

random search technique narrows down the search space as per its

characteristic relatively easily. These results are fed as input to the

conventional technique to zero in at the optimal value. This type

of augmentation, which combines two types of optimization

processes, to improve the robustness of optimization process is

called the hybrid techniques. Following is the brief of research

done on the optimal configuration of HRES using hybrid

techniques.

Rentizelas et al. [174] developed a decision support system for

multi biomass system used for multi-purposes including heating

and cooling requirements along with power production in Greece.

This system uses a hybrid algorithm, which has a genetic algo-

rithm (GA) as the first step and sequential quadratic programming

(SQL) as the second. The HRES system combining the PV, WT and

BS for Auckland, New Zealand [175] for zero LPSP using a newly

presented hybrid optimization technique consisting of GA and
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exhaustive search technique. A hybrid approach using Flower

Pollination Algorithm and Simulated Annealing for given LPSP

is presented by Tahani et al. [176] for PV, WT and BS system, where

the effect of wind speed, for the given tilt angle of the PV panel, is

studied using CFD analysis in FLUENT. The hybrid optimization

technique combining Ant Colony Optimization and Artificial Bee

Colony is proposed [177] for Wind based HRES, where uncertainty

is incorporated using the point estimation method using MATLAB.

CSAHS (Chaotic simulated annealing-based harmony search) and

SAHS (Simulated annealing-based harmony search) [178] are

employed for the PV, WT and FC system in MATLAB for the

location in Iran, where SAHS is found to be better. Carapelluci

and Giordano [179] simulated the code for the farm in central Italy

using Genetic Algorithm — Simulated Annealing algorithm with

hydrogen (H) as energy storage carrier. They examined three

configurations, namely, PV-H, WT-H and MHP-H separately with

MHP-H as concluded more economic.

Several attempts to find a good combination of more than one

search technique can be seen in the literature surveyed as summa-

rized in Table 8. It is important to maintain the relative merits of

individual techniques while combining them together. The amal-

gamation of classical techniques with heuristic technique is widely

implemented as seen from the literature reviewed. Although there

was one study noted, which combined GA and PSO, to get the

benefit of their strengths in floating and integer numbers respec-

tively. Researchers especially from Iran have tried to come up with

hybrid techniques to deploy for HRES optimization as evident

from the literature survey. Authors see a lot of opportunities for

further research in the quest for further inquiry in the field of HRES

optimal design and sizing.

Conclusions and discussion
A comprehensive review of optimization techniques used for the

optimal configuration of hybrid renewable energy systems (HRES)

is presented. The shortcomings of the conventional optimization

techniques like their inability to handle a large number of variables

and mono-objective model restricted them to earlier use. In the

early days of the evolution of the HRES, the economics and

reliability criteria were the focus of the designers of the HRES

system. Nowadays other criteria like the carbon emission for

environmental concerns and job creation in the social sphere

are increasingly seen as assessment parameters. This makes the

modeling of HRES much more nuanced and adds subjectivity in

the selection of design solutions among the Pareto optimal results

of the multi-objective optimization problem. Artificial techniques

like genetic algorithm (GA), particle swarm optimization (PSO)

and other evolutionary algorithms are needed to effectively han-

dle multi-criteria decision-making. Various variants of GA and PSO

have been employed for the HRES sizing optimization to custom-

ize the algorithms as per the need of the HRES sizing problem.

Many of the researchers tried to combine two different optimiza-

tion techniques to use the advantages of both, which seems to be

the way forward for the researchers working in this area. The

feasibility studies of HRES of GW scale for the grid supply seems

to be way forward. The HRES of the scale of kW and double-digit

MW have been considered until now. The feasibility studies of

HRES of GW scale for the grid supply need to be considered. The
research community is expected to put efforts into the develop-

ment of modeling and optimization tools to deal with that.

The combination of solar, wind and biomass is a promising

combination in the regions, where a sufficient amount of biomass

is available, as it can minimize the economic cost of battery system

type energy storage and environmental cost of diesel generator

type dispatchable source. The energy storage techniques other

than battery storage like electrolyzer-hydrogen-fuel cell combina-

tion for HRES need to be further explored. In addition to that, the

HRES is progressively considered in the grid-connected mode. In

the early days, the cost of energy from HRES was more in compari-

son to grid-supplied power, so HRES were considered mainly for

remote locations and islands in stand-alone mode. In the context

of increasing environmental cost and steady decline in the cost of

renewable energy power extraction technologies has led to con-

sider HRES system increasingly in grid-connected mode. This has

made the AC bus-based or special purpose hybrid bus-based archi-

tecture of HRES imperative.
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