
PoRF: Proof-of-Reputation-based Consensus
Scheme for Fair Transaction Ordering

Sidharth Shyamsukha
Dept. of Computer Science and Engg.

Nirma University
Ahmedabad, Gujarat, India

17bit109@nirmauni.ac.in

Pronaya Bhattacharya
Dept. of Computer Science and Engg.

Institute of Technology
Nirma University

Ahmedabad, Gujarat, India
pronoya.bhattacharya@nirmauni.ac.in

Farnazbanu Patel
Dept. of Computer Science and Engg.

Nirma University
Ahmedabad, Gujarat, India
19mcei04@nirmauni.ac.in

Sudeep Tanwar
Dept. of Computer Science and Engg.

Nirma University
Ahmedabad, Gujarat, India

sudeep.tanwar@nirmauni.ac.in

Rajesh Gupta
Dept. of Computer Science and Engg.

Nirma University
Ahmedabad, Gujarat, India
18ftvphde31@nirmauni.ac.in

Emil Pricop
Automatic Control, Comp. and Elect. Dept.

Petroleum-Gas University of Ploiesti
Romania

emil.pricop@upg-ploiesti.ro

Abstract—Blockchain (BC)-driven applications ensure trust
and transparency among multiple stakeholders through different
consensus mechanisms. In consensus mechanisms, a dishonest
node (or application), might collude with peer nodes, or miners,
to prioritize its transactions over other node transactions, thereby
reducing its latency and improving its quality-of-service (QoS).
To address the above limitation, this paper proposes a consensus
scheme, PoRF, based on a reputation-based consensus scheme
that allows fair and random transaction selection. The scheme
proposes that a sharded BC is considered, managed through
shard managers (SM), to address latency and bandwidth issues.
A reputation coefficient score is generated, and a reward-penalty
setup is considered for nodes based on honest, or dishonest
transaction proposals. Based on the reward-penalty outcome,
the reputation score for nodes is modified. The scheme is
compared with fixed transaction ordering scheme, Helix scheme,
and practical byzantine fault tolerance (PBFT) consensus for
transaction fairness, transaction time, and epochs required for
consensus formations. The scheme outperforms the considered
schemes for the considered parameters. For example, for 50%
dishonest nodes, an improvement of 70 % is recorded against a
fixed transaction scheme, and at 4000 nodes, the proposed scheme
takes 130 milliseconds (ms) less for the execution of transactions.
For consensus formation, at 250 nodes, PBFT takes 167 epochs
for consensus, compared to 24 epochs in the proposed scheme,
which indicates the scheme’s viability in real-world setups.

Index Terms—Blockchain, Consensus, Fair Transactions, Rep-
utation, Mining

I. INTRODUCTION

In decentralized ecosystems, blockchain (BC) technology has
led to disruption owing to its adoption to a wide range

of applications, ranging from finance, healthcare, Internet-of-
Things, and many more. In BC, peer entities add transactions,
that are forwarded and added to blocks. Thus, each block
contains a list of transactions and is added sequentially, based
on linked hashes that connect the previous block hash to the
current block. Miners perform transactions and block addition.
They are provided an incentive for their mining activity [1]. In

BC, all the recorded information is added through consensus,
and thus any update in block structure invalidates the entire
chain. However, the new block addition is selected from the
pending transaction list, and thus, the transaction ordering
sequence plays a critical role in determining fair quality-of-
service (QoS) to every peer-to-peer (P2P) node.

The fair enforcement of transaction selection in BC might
be diluted via dishonest entities (miners and P2P nodes). A
P2P application might prioritize and favor its transactions to
be added over other node transactions. This might require
external compute and energy requirements, that are provided
through external colluding parties. As more transactions are
recorded for dishonest nodes, the transaction selections in-
crease, thereby improving the block mining rate, and shared
node bandwidth [2]. Moreover, some networks allow joint
participation of miner and P2P node for proposal of block
selection, and thus miner intends to add nodes from where
the profits and incentives might be maximized [3]. Thus,
there is a requirement of stringent fair enforcement of node
participation, to make fair transaction selection.

To enforce fair transaction ordering (FTO) and dependence,
researchers globally have proposed schemes to enforce fairness
in transaction ordering. One possible approach is to design a
consensus protocol where nodes mutually agree on the validity
of ledger data and verify that false appends are not considered.
A double cross-verification is required before approval of the
new block addition. Earlier, a proposed protocol, Asayag et
al. [4] proposed a scheme named Helix, that strengthened the
FTO through a round-based transaction addition scheme. In
Helix, each round consists of a primary node selector, which
gets elected through majority vote participation in the BC
network. The selector elects the new block addition, and the
election committee validates the newly added block ledger
entries. Once the block addition is deemed fair, then the block
is added to the main chain structure. To avoid collusions in

978-1-6654-2534-6/21/$31.00 ©2021 IEEE

20
21

 1
3t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
le

ct
ro

ni
cs

, C
om

pu
te

rs
 a

nd
 A

rti
fic

ia
l I

nt
el

lig
en

ce
 (E

C
A

I)
 |

97
8-

1-
66

54
-2

53
4-

6/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
EC

A
I5

23
76

.2
02

1.
95

15
09

0

Authorized licensed use limited to: Institute of Technology (Nirma University). Downloaded on March 27,2022 at 09:56:09 UTC from IEEE Xplore. Restrictions apply.

the selection committee process, nodes are added randomly,
and thus next node selection is equally likely for all nodes.

However, Helix scheme suffered an inherent limitation. The
scheme did not utilize the entire information of committee
structure and focus more on independent approval counts
for a majority decision. To address the limitation, a joint
decision protocol is proposed, that enhanced the effectiveness
of the voting committee. The scheme proposed incentives
to nodes on basis of a reputation score, that encourages
nodes to act fairly for primary selector [5]. Another study
by Orda et al. [6] suggested using bloom filters or Merkle
tree as a primary data structure to eliminate dishonest nodes
that prioritize their transaction selection, that jeopardize the
fairness of BC. However, the proposed schemes suffered from
inherent limitations of low transaction rate, and thus mining
scalability was a major concern.

To address the scalability issues, sharding was proposed
in BC ledgers. The shards are constructed based on node
distance, energy consideration, and minimizing latency in oral
propagation updates [7]. The sharding segments follow the
practical byzantine fault tolerance (PBFT) consensus, and thus
dual benefits of transaction selection fairness and scalability
are addressed. To address the issue of transaction age, an age-
aware protocol is proposed by Sokolik et al. [8], that prioritizes
transactions based on longest waiting time, regardless of the
identity of the application node. This ensures fairness for old
transactions and ensures uniformity in transaction ordering.
However, dishonest nodes can modify timestamps to forge the
waiting time, that increases the transaction age, and subse-
quently, scheduling priority of dishonest transaction increases.

A. Discussion on existing schemes

In BC network, for FTO, two schemes Fairledger [9] and
Optimistic fair exchange [10] are proposed. The schemes
assume that for transaction addition, participating nodes are
honest, and do not perform any collusion activity. The inherent
assumption implies that meta-information of the transactions
are not altered, and only those nodes that are caught violating
the above principles are punished. As the baseline assumption
is all nodes are honest and fair, any treacherous act is taken
into strict action and all nodes are punished in terms of
transaction bandwidth. Due to slow executions, there are
frequent transaction timeouts and rollbacks in the network,
which reduces the overall throughput speed of the network
and increases mining latency.

Next, we present the fixed transaction [11], and the age-
aware [8] approaches. In the fixed transaction approach, all
nodes are proposed equal bandwidth and resources to add
transactions. In the age-aware approach, a timer is attached
with the transactions that are not currently added as part of
the chain structure for a particular node. Once the transactions
become part of the proposed block structure, the timer is
pruned. However, the scheme does not provide any mechanism
for timestamp modifications, that increases the transaction
wait time, that increases the node priority to add the next
transaction. A modified approach is proposed by authors in

[12], and a consensus-based decision in [6], that addresses
the limitations via verification of the node timestamp, through
a global notion of timer. However, the approach adds extra
overhead on the network to monitor the transaction age for
all nodes, which significantly reduces the scalability of the
chain. To address this, smaller chains, or shards, are proposed,
that improves the mining latency and scalability of the overall
chain. Thus, the proposed scheme, PoRF, exploits the benefits
of both age-aware consensus, and sharding, which reduces the
overall latency, redundancy, and improves the block processing
time.

B. Novelty

The proposed work addresses the research gaps in earlier
approaches through a reputation score, and reward-penalty
setup for nodes in the BC network. There is a linear increase
in reputation score for honest transaction additions, and in the
case of dishonest additions, the reputation score is halved. This
ensures a fair selection of nodes for different requirements. We
have considered a sharded BC, and nodes are continuously
monitored inside the shard, in the presence of SM. In case
SM oversights, or collude with any node, the entire shard
is penalized, due to incorrect transaction updates caught by
miners. In case of a penalty, the reputation score of SM is
reduced, and if the score falls below a threshold limit, the
SM is dissolved, and a new SM is appointed through a fair
election. Through the reward-penalty scheme, and reputation
score of SM, we ensure a dual-monitoring of activities inside
a shard.

C. Research Contributions

Following are the major contributions of the scheme.
• An FTO scheme is proposed which uses timestamps

and reputation coefficient to ensure honest transaction
addition inside the shard boundary structure.

• A mutual consensus between inter-shard managers is pro-
posed which selects the miners and new shard managers
based on their reputation.

• Based on mutual consensus, dishonest and colluding
nodes are identified in the scheme, and subsequently,
reward-penalty is applied to them. For the score, a mutual
consensus and validations of previous transactions are
committed.

D. Layout

The paper is organized into five sections. Section II presents
the proposed scheme PoRF consensus for fair transaction
ordering. Section III presents the performance evaluation of
the proposed scheme, and finally section IV concludes the
paper.

II. PoRF: THE PROPOSED FRAMEWORK

The section presents the discussion of the proposed scheme,
PoRF for FTO of nodes in BC network. We first present
the system model, and then present the proposed consensus
scheme. The details are presented as follows.

Authorized licensed use limited to: Institute of Technology (Nirma University). Downloaded on March 27,2022 at 09:56:09 UTC from IEEE Xplore. Restrictions apply.

Transaction Pool T p

U1

U2

U3

Un

E
nt

it
yE

U
T1k

T2k

T3k

Tnk

Miners EM

Local
manager

B1B2
B3
Bk

Bc

SM3 SMa

SM1 SM2

R1 R2

R3 R4

Sharding and reputation
coefficient of SMa

Discarded
Blocks

Fair Block selection

Selection
consensus

Addition to
chain

Bnew

Fig. 1: PoRF: System model

A. System Model

The section presents the proposed consensus scheme, PoRF,
that presents a reputation-based scheme for addition of fair
transactions. Fig. 1 presents the schematics of the model. The
scheme consists of entities E = {EU , EM , ESM}, where
EU denotes the users, EM are the miner nodes and ESM
denotes the shard manager (SM). We consider that n users are
connected in the network, represented as {U1, U2, . . . , Un}.
Any ith user Ui adds k transactions, denoted as T ik, based
on mapping Mi : EUi → Tk. The collected data from
Mi is presented to the transaction pool Tp, aggregated ∀n
users. with the usual constraint of Tp > n. The transactions
are added by EM to Tp, once the ESM agree unanimously
on the same. The scheme assumes q ∈ EM miners, and
b ∈ ESM the shard managers as validators. Out of q miners,
t miners are malicious, with constraint {t ∈ EM , t < q}.
These t miners might collude with l malicious validators, with
{l ∈ EV , l < b}, or EU , to add unfair transactions in Tp.

Based on added transactions to Tp, and fair ordering
scheme, m transactions are added to a block B, and overall
z blocks Bc = {B1, B2, . . . , Bz} are added to . To allow
FTO sequence in block addition, the scheme assumes Bc is
subdivided into shards SBc . A total of a shards are present,
denoted as {S1, S2, . . . , Sa}, where a < z. Each shard
contains a sub-sequence {Bx, Bx+1, . . . , By} of the original
Bc, with the usual constraints 1 < x < z, 1 < y < z}.
Every SBc

contains ESM , as head node that supervises the
fair transaction addition in its own shard. With the help of
sharding, the maximum transactions per second (TPS), which
is depicted and obtained as in [13],

TPSmax = kbBsize −Hsize/Txavgc/Tinterval (1)

Here, Bsize is the block size (bytes), Hsize is the block header
size, Txavg is the average transaction size and Tinterval is the
block interval period. So, by gradual increase of block size/No.
of shards, TPS can be increased.

The selection of ESM in any Sa is done by the network
through bloom filters. We consider the membership M(ESM)
of any SM. A bit vector BV is considered, with k cells. The
index of any kth cell is represented by I(k). In case ESM

is present in Sa, M(ESM) is TRUE, and value at I(k) is
presented as follows.

V (I(k)) = SHA− 256(ID(ESM) (2)

where V (I(k)) is the value at I(k), and SHA −
256(ID(ESM) presents the hashed reference of ID of
ESM .The reason of usage of bloom filters is the membership
independence and uniformity. The false-positive rates are
significantly reduced as follows.

FP = (1− e−kn/m)k (3)

where k represents the number of hash functions required for
membership, n denotes the range of values, and m denotes
the number of bits in ID(ESM). Given m and n values, the
optimization problem is to choose a suitable k [4]. Based on
this, every shard node consists of EM , and EV , which are
responsible for mining and validation of added transactions.

Whenever an EU completes a transaction Tp, it updates
the information based on the order of metadata stored in
the main node to the ledger. That information is verified by
the ESM based on the calculation done by the node, also
it checks the timestamp of the transaction and other details
by cross verifying the details with all the ESM ’s of the
shards {S1, S2, . . . , Sa}. if any discrepancy is found then the
reputation Coefficient Rk, where 1 <= k <= n of the EU
value is reduced and it is penalized with timeout or fines.

As depicted in Fig. 2, a node is elected as ESM by other
nodes in every shard. Post election of ESM , whenever a new
node seeks to join through the shard, it needs the approval
of the ESM to join the respective shard. For the same, ESM
verifies the hash of the data of the new node to be added, and
R of the node, and then stores the data in its ledger. The data is
stored based on the timestamp of the transaction, as suggested
in Silva et al [11], post verification by ESM . The transactions
are divided into two parts, first, the older-transaction part Pot,
which includes the senior transactions (ST), and the next is
randomly selected transactions, denoted by Prand. The details
are presented as follows.

Pot = STmax

STmax < Bsize
(4)

The random selected transaction addition is presented as
follows.

Prand = Bsize − STmax (5)

where, STmax is maximum ST included in the shard. Older
transactions are given higher priority so that they get updated
the ESM ’s ledger first. This ensures fairness in sequencing
transactions in the block.The proposed block passes the older
transactions part validation as follows,∏

Senior Transaction α

Pr(GEuα ≥ gEuα |Q
Esm,α
tlearn) > v (6)

Here α denotes any ST observed by ESM . Probability of the
ST selected should be greater than some threshold value v to
justify fairness.G denotes a random variable representing the

Authorized licensed use limited to: Institute of Technology (Nirma University). Downloaded on March 27,2022 at 09:56:09 UTC from IEEE Xplore. Restrictions apply.

Eu13

R=12000

ESM1

ESM2

ESM3

ESMa-2

ESMa-1

ESMa

ESM4

4. Consensus

2. Share
proposal
+ R value

1. Mining
Proposal
5. Allow
Proposal

3. C
heck

R value
Eu3n

R=3000

6. M
ining

Proposal

7. Reject Proposal
as R< 10K

Fig. 2: PoRF: Transaction Validity through reputation values

age of the transaction added by the Eu, while g is the actual
age. tlearn is the time at which the ESM learned about the
transaction [8].

The ST satisifies the following constraints

C1 : Tx local age > Tthreshold + Tpropagation (7)

where, Tthreshold is threshold Tx age, and Tpropagation is

Algorithm 1 Checking Transaction Validity
Input: Transaction Details,R value ,node
Output: Condition for adding transactionTrueFalse

1: procedure VERIFICATION()
2: a← Total Shards
3: for j = 1 to j = a do
4: x← Nodes in a Shard
5: Algorithm 2.Initialization() called
6: for l = 1 to l = x do
7: k ← Number of transactions added by a node
8: for m = 1 to m = k do
9: t← time

10: amount← Transaction amount
11: s← Sender
12: r ← Receiver
13: if (s.R < 10000 or r.R < 10000) then
14: Return False
15: end if
16: if (ks.hash() == kr.hash()) then
17: if (s.time() == r.time() and s.amount() ==

r.amount()) then
18: Algorithm 2.Calculation() called
19: Return True
20: else
21: Return False
22: end if
23: else
24: Return False
25: end if
26: end for
27: end for
28: end for
29: end procedure

the time a Tx is proposed by a user until it is communicated
to the other user. After completing a block of data the
ESM hashes the block, and then passes it on to all the other
main nodes {SSM1, SSM2, . . . , SSMa}, which is total of a
shards. All ESM verifies the hashes with the old hashes of

Algorithm 2 Calculating Reputation Coefficient
Input: Transaction Details,R value,node
Output: Condition for adding transactionTrueFalse

1: procedure INITIALIZATION()
2: Ei

u ← New nodes added to
3: for Every new node do
4: assign Ei

u.R = 10000
5: end for
6: end procedure
7: procedure CALCULATION()
8: Poll nodes for transactions
9: k ← Number of transactions added by a node

10: for i = 1 to i = k do
11: if T [i]k.validity==True then
12: R = R + 1
13: else
14: R = R2
15: end if
16: end for
17: end procedure

the block stored within their own ledger and then add the
new block in their respective ledgers. Algorithm 1 presents
the schematics of transaction validity. Initially, a verification
process is called on a shards, and transactions are added.
Next, based on computed value of R, the transactions are
added. Algorithm 1 has a total of a shards, and x nodes in a
given shard, that adds k transactions in total. Hence, the time
complexity is O(k.x.a). ∀ a shards, k transactions are stored,
and hence the space complexity is O(ka).

B. PoRF: A novel reputation-based consensus protocol

In this subsection, we present the usage of reputation
coefficient R that helps in distinguishing dishonest nodes
from honest nodes. Apart from normal nodes, every ESM
are assigned R values. All new nodes start with R = 10000,
which is incremented for every correct transaction and halved
for every fraudulent or incorrect transaction. This value of
R = 10000 is assumed to facilitate the halving punishment
for the dishonest nodes since a considerable amount of
transactions takes place in a BC so the R value will be
maintained. Only entities with R > 10000, set as a threshold,
can participate as EM or ESM , rest nodes are eligible to take
part in regular transactions. This ensures fairness in selection
among the entities.

Correct T i added→ R = R+ 1

Incorrect T i added→ R =
R

2

(8)

Any user EU that wishes to change its state to EM , notifies
this proposal to the ESM . ESM frequently polls all the
nodes under it and collects all these proposals. ESM then
broadcasts these proposals to all the other shard managers
{SSM1, SSM2, . . . , SSMa}. Then all the ESM together gos-
sips among themselves the selection ratio x i.e. the percentage
of proposals that would be allowed based on the mining
requirements of the system. All these ESM ’s compare the R
values of all the candidate nodes and priority is given to the
nodes having the highest R values, or every node above the
threshold value of 10000 are allowed to be a EM . For example,

Authorized licensed use limited to: Institute of Technology (Nirma University). Downloaded on March 27,2022 at 09:56:09 UTC from IEEE Xplore. Restrictions apply.

at the start, the R value of EM ’s is below the threshold. All
ESM looks at the previous transactions of the nodes from
their ledgers, to find any set of discrepancies. The final list
of new EM ’s is released when consensus is reached ∀ ESM .
The respective ESM notify the respective candidate entity of
their status of whether they are allowed to be a EM or not.

In case some ESM ’s from a different shard tries to collude
with dishonest EM ’s to add some fake transactions Ti or
change the value of R of some EUnodes, they are not
successful in the scheme. Alteration in R value by any EU
is done so that the node can EM , and gain access to add
transactions to BC. Such collusions are not possible as R
values and transaction timestamps won’t match in other ESM ’s
ledger, and thus consensus from other ESM would fail. Other
ESM ’s would be able to notice these discrepancies, and this
would result in penalizing the concerned ESM R value to
half, and subsequently, the dishonest ESM ’s would lose its
role as SM. In such cases, for the concerned shard, an election
process would be re-initiated and a new ESM would be elected
from the remaining nodes, either in the entire network or from
EM that has the maximum R value in the shard. Algorithm 2
presents the computation of R based on the reward-penalty
scheme. For every honest addition, the R value increases
linearly and is halved for an invalid transaction. The R value is
considered for every node polled for transactions in a shards.
Thus, the time complexity of algorithm 2 is O(a.x). For all
x nodes, storage of R value takes a constant space, thus the
space complexity is O(x).

III. PERFORMANCE EVALUATION OF PoRF

The section presents the performance evaluation of the
PoRF scheme. For simulation purposes, the instances are run
on each GPU independently. The ledger stored in the memory
of the GPU is used to refer to the previous transactions. We
initiated a local sharded BC with 10000 nodes, these nodes
were divided equally into 25 shards. In each shard, we have
considered 10 nodes, and 1 ESM . Thus, for the entire BC
network, a total of 25 ESM are present in the entire network.
We have considered a reduced value of R for better visibility
of simulation results and have fixed the value at R = 1000. We
have compared our proposed scheme against fixed transaction
ordering, as proposed in Silva et al. [11] for transaction
fairness, and Asayag et al. [4] for transaction time. Next, we
compared our scheme against the standard PBFT scheme for
a number of epochs that required consensus formation with
increasing users. The experimental setup and discussion of
the results are now presented in subsequent subsections.

A. Experimental Setup

For simulation purposes, we have considered the Intel
Core i7 processor series that runs the sharding instances of
the ethereum mining server. For storage requirements, 16
gigabytes RAM is present, and for mining requirements, we
have used Nvidia RTX 1650 graphics processor units. The
ethereum setup is connected with 1 GbE ethernet switch, and
experiments are performed on Linux operating system.

B. Simulation Results

As shown in Fig.3 (a), PoRF is compared with fixed
transaction scheme proposed by Silva et al. [11] based on the
probability of transactions that would be added in proportion to
the percentage of dishonest nodes. Silva et al [11] proposed
an epidemic based transaction ordering protocol EpTO, that
can be manipulated by the dishonest nodes when they reach a
majority in the consensus. However, in the proposed scheme,
the limitation is addressed, as shard managers are responsi-
ble for block communication, and unless all ESM become
dishonest, there is slight probability of dishonest additions.
The same is stated due to the fact that each ESM has to
maintain a consistent reputation value R, otherwise it would
not be allowed to add transactions in future. As indicated in
Fig. 3 (a), at 50% dishonest nodes, the probability of adding
the transaction in Silva et al. [11] becomes negligible around
0.0024, while in PoRF, the probability value is 0.7011 which
indicates a 70% improvement

In Fig.3 (b), we compare transaction time against number of
nodes. At 4000 nodes Asayag et al. [4], Helix scheme took ap-
proximately 220 milliseconds (ms), while the proposed scheme
takes ≈ 90 ms to complete and validate a transaction. As more
nodes are added, the improvement is further intensified. As
transactions are validated by ESM , less time is required for
validation purposes.

Next, we present the impact of reputation coefficient
against collusion attacks. Fig.4 (a) shows the impact of R on
system. For demonstration purposes, we have considered the
value of R as 1000 as threshold. Here, 4 different user type
U = {U1, U2, U3, U4} are considered, where they propose
100%, 75%, 50% correct Tx, and 100% of the fraudulent
Tx respectively. So, as per the properties of R, U1 always
proposes a fair transaction, hence is rewarded, and the value
of R increases linearly. If we consider 14 transactions, the final
value would be 1014. U1 proposes 3

4 transactions as correct,
and hence at 3rd transaction, a penalty of R/2 is applied.
Similarly, U3 proposes 1

2 transactions correctly, and hence
there is a drop of R/2 after each interleaved transaction. U4

proposes all transactions as incorrect, and thus each successive
transaction, value of R is halved. Hence, increased penalties
for EU results in revocation of rights of ESM , or EM in the
BC network. This reward-penalty step motivates the user to
propose correct Tx, eliminating chances of possible collusions
between ESM and EM , ensuring fair selections.

At last, Fig.4 (b) shows the required number of epochs
required for consensus formation in the BC network. In
consensus formation, we consider all nodes in BC converge
to the same and common state of the ledger. The formation is
based on the propagation of oral updates in the network. The
scheme is compared against PBFT consensus, which requires
2f +1 validations, where f is the number of faulty nodes. In
the proposed scheme, the block validation is done by ESM
only. For example, for 250 U , PBFT requires 167 epochs for
convergence, compared to 24 epochs in the proposed scheme.
The reduction in the number of epochs is due to fewer oral

Authorized licensed use limited to: Institute of Technology (Nirma University). Downloaded on March 27,2022 at 09:56:09 UTC from IEEE Xplore. Restrictions apply.

(a) Analysis of transaction fairness (b) Analysis of transaction time

Fig. 3: Comparative analysis of PoRF scheme against existing schemes

(a) Impact of reputation coefficient against
collusion attacks (b) Impact of sharding on validations

Fig. 4: Analysis of impact of reputation coefficient and required validations against PBFT

propagation messages among ESM only, and not all nodes.
This also improves the communication latency in the network.

IV. CONCLUSION

The paper presents a reputation-based consensus scheme,
PoRF, that addresses the issue of FTO in BC. The scheme
addresses the skewness of dishonest nodes, adds more trans-
actions, and fairly improves the QoS for all nodes in BC. To
address BC scalability, and mining latency, we divide the entire
global chain into shards, each managed through SM. Each SM
is assigned a reputation score of R that indicates the honesty
of oral communication updates in BC ledgers. Each node is
assigned an initial value of R, and a reward-penalty scheme
is formulated. Nodes that propose incorrect transactions are
penalized and are revoked from proposing further transactions,
and honest nodes are rewarded with a linear increase in the R
score. Nodes with the highest R value are elected for shard
managers. This motivates nodes to participate honestly and
increases fairness in the ecosystem.

As part of the future work, the authors would like to inves-
tigate further on optimal trade-offs of fairness vs scalability
through reduced node participation in shards. We would also
like to investigate the effect of Poisson arrival transaction
distributions to local shards and measure the effectiveness of
fair transactions, to maintain a consistent BC throughput.

REFERENCES

[1] S. Ferretti and G. D’Angelo, “On the ethereum blockchain structure: A
complex networks theory perspective,” Concurrency and Computation:

Practice and Experience, vol. 32, no. 12, p. e5493, 2020. e5493
cpe.5493.

[2] H. Shi, S. Wang, and Y. Xiao, “Queuing without patience: A novel
transaction selection mechanism in blockchain for iot enhancement,”
IEEE Internet of Things Journal, vol. 7, no. 9, pp. 7941–7948, 2020.

[3] Y. Liu, Z. Fang, M. H. Cheung, W. Cai, and J. Huang, “A social welfare
maximization mechanism for blockchain storage,” 2021.

[4] A. Asayag, G. Cohen, I. Grayevsky, M. Leshkowitz, O. Rottenstreich,
R. Tamari, and D. Yakira, “A fair consensus protocol for transaction
ordering,” in 2018 IEEE 26th International Conference on Network
Protocols (ICNP), pp. 55–65, IEEE, 2018.

[5] E. K. Wang, Z. Liang, C.-M. Chen, S. Kumari, and M. K. Khan, “Porx:
A reputation incentive scheme for blockchain consensus of iiot,” Future
Generation Computer Systems, vol. 102, pp. 140–151, 2020.

[6] A. Orda and O. Rottenstreich, “Enforcing fairness in blockchain trans-
action ordering,” in 2019 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC), pp. 368–375, IEEE, 2019.

[7] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on
blockchain,” in Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, AFT ’19, (New York, NY, USA), p. 41–61,
Association for Computing Machinery, 2019.

[8] Y. Sokolik and O. Rottenstreich, “Age-aware fairness in blockchain
transaction ordering,” in 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS), pp. 1–9, IEEE, 2020.

[9] K. Lev-Ari, A. Spiegelman, I. Keidar, and D. Malkhi, “Fairledger:
A fair blockchain protocol for financial institutions,” arXiv preprint
arXiv:1906.03819, 2019.

[10] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Toward fairness of
cryptocurrency payments,” IEEE Security & Privacy, vol. 16, no. 3,
pp. 81–89, 2018.

[11] P. M. da Silva, M. Matos, and J. Barreto, “Fixed transaction ordering
and admission in blockchains,” 2019.

[12] L. Zhang, H. Zhang, J. Yu, and H. Xian, “Blockchain-based two-party
fair contract signing scheme,” Information Sciences, vol. 535, pp. 142–
155, 2020.

[13] J. Yun, Y. Goh, and J.-M. Chung, “Dqn-based optimization framework
for secure sharded blockchain systems,” IEEE Internet of Things Jour-
nal, vol. 8, no. 2, pp. 708–722, 2021.

Authorized licensed use limited to: Institute of Technology (Nirma University). Downloaded on March 27,2022 at 09:56:09 UTC from IEEE Xplore. Restrictions apply.

