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Abstract
Advanced oxidation processes (AOPs) gain attention for wastewater treatment due to the formation of hydroxyl radicals, 
which have more oxidation potential. Among all AOPs, few  O3,  O3/UV,  O3/UV/persulfate (PS), and  O3/catalyst processes 
were studied to degrade RB5 dye wastewater. Furthermore, the effect of various experimental parameters like ozone flowrate 
(30–60 LPH), initial pH (2–12), initial dye concentration (100–1000 mg/L), UV intensity (11–66 W), persulfate dosage, and 
catalyst dosage (0.5–1.2 g/L) was studied for degradation of RB5. Furthermore, the prepared catalyst was characterized by 
X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and BET surface area. Based on the results 
obtained in the study, the maximum TOC removal efficiency was 96% achieved with optimum operating parameters, 60 LPH 
of ozone flowrate, 7 pH, 100 mg/L RB5 concentration, and 1 g/L catalyst dosage in 80 min of reaction time using  O3/catalyst 
process, while in  O3/UV/PS process, the total organic carbon (TOC) removal efficiency was 90% with optimum operating 
parameters, 60 LPH of ozone flowrate, 12 pH, 100 mg/L RB5 concentration, UV intensity 66 W, and TOC/PS ratio 1:40 in 
80 min of reaction time. Finally, it can be seen that ozone-based AOPs offered an effective solution for the degradation of 
recalcitrant pollutants, especially RB5.
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Introduction

Water pollution is the biggest issue being faced by human-
ity in this era. Availability of fresh and unpolluted water 
is a primary social and economic concern due to the rapid 
growth of industry and population worldwide. However, the 
fast growth in industrialization reflected a rise in  pollution 
in water, air, and soil; simultaneously, the freshwater short-
age increased. Therefore, investigation of new treatment 
technologies that treat the complete removal of pollutants 
is vital [1]. Advanced oxidation processes (AOPs) such as 
photocatalysis and ozonation have been studied widely as 
preferred options for removing pollutants from wastewater 
[2–12]. Several ozone-based AOPs applied in different types 
of wastewater treatment are summarized in Fig. 1.

Ozonation is the competent treatment for textile waste-
water decomposing many substances, including dyes. The 

effectiveness of the ozonation process is influenced by better 
ozone dispersion, intimate contact between the liquid gas 
phases, and ozone bubble size in the process [1]. However, 
the ozonation process has some drawbacks that restrict its 
effectiveness due to its low selectivity and partial oxida-
tion of organic matter; therefore, complete mineralization 
of the pollutants is not attained [44, 45]. Apart from these 
limitations, ozone production has relatively low efficiency 
and high electric energy consumption, so the combination 
of these processes is extensively studied [13, 14].

O3/UV is a proficient method for degradation of recal-
citrant organic pollutants by applying ozonation with UV 
radiation process for accelerated production of •OH radi-
cals [15]. Complex molecules can be degraded proficiently 
using combined techniques due to the existence of differ-
ent reaction pathways. Organic compounds in water may 
be degraded through a series of oxidation and radical reac-
tions by  O3 and •OH radicals. These can be enhanced in 
the presence of UV radiation. In recent times, recalcitrant 
organic pollutants are oxidized by persulfate  (S2O8

2−) as it 
has relatively higher oxidation potential (E0 = 2.01) and is 
most effective for different types of wastewater [16–18, 46]. 
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On the other hand,  SO4
•− is effective for the degradation of 

anthraquinone dye due to the ineffectiveness of •OH. It may 
be due to sulfate radicals having a higher half-life than •OH, 
favoring electron transfer. Sulfate radicals may be generated 
by activation of persulfate using heat, UV radiation, metals, 
or radiolysis [17, 19–21].

Catalytic ozonation gains attention due to its higher effi-
ciency, fast reaction rate, and no secondary pollutant [22]. 
Furthermore, the heterogeneous catalyst used in the process 
helps generate hydroxyl radicals, which can react non-selec-
tively with any organic pollutants and increase the minerali-
zation rate [23]. In the past, different metal oxides, metal/
metal oxides on supports, mesoporous materials, etc., are 
used as a catalyst in catalytic ozonation systems. Recently, 
composite metal oxides have been used to form the new 
active sites due to the two metal oxides and improve the 
catalyst activity [22]. It is reported that the cerium is widely 
used as a catalyst due to its excellent redox property and 
oxygen storage capacity [10]. Also, due to the multivalence 
oxidation state of cobalt, it is widely used as a catalyst. 
Therefore, in this paper, the composite of cobalt and cerium 
oxide was prepared for the removal of RB5.

Therefore, the main objective of the present study is to 
compare the performance of ozone-based AOPs such as 
Ozone  (O3), ozone–ultraviolet  (O3/UV), ozone–ultravio-
let–persulfate  (O3/UV/PS), and catalytic ozonation for deg-
radation of Reactive Black 5 (RB5) dye, conducted under 
various experimental conditions. The present work focuses 
on the preparation of cerium and cobalt composite metal 
oxide Ce–Co–O (30/70 wt %) for the degradation of RB5 

dye. The catalyst was characterized by the SEM, XRD, EDS, 
and BET surface area. Operating parameters like ozone flow 
rate, catalyst dosage, initial pH, and initial concentration of 
dye were optimized for higher TOC removal efficiency. In 
addition, catalyst activity was examined for up to four con-
secutive cycles. In all the experiments, degradation of RB5 
was measured as %TOC removal and represented.

Material and methods

Materials

The material and chemicals used in the study are potas-
sium iodide (KI), sulfuric acid (98%), sodium hydrox-
ide (NaOH), sodium persulfate  (Na2S2O8), cerium nitrate 
hexahydrate (Ce(NO3)3.6H2O), cobalt nitrate hexahydrate 
(Co(NO3)2.6H2O), tert-butyl alcohol (TBA), ethylene gly-
col  (CH2OH–CH2OH), citric acid  (C6H8O7), nitric acid 
 (HNO3), tert-butyl alcohol (TBA), cerium nitrate hexa-
hydrate (Ce(NO3)3.6H2O), cobalt nitrate hexahydrate 
(Co(NO3)2.6H2O), sodium hydroxide pellet (NaOH) and 
potassium iodide (KI) and distilled water. All chemicals 
were used of analytical grade without any further purifica-
tion. Reactive Black 5 was purchased from a local supplier, 
Ahmedabad, Gujarat.

Preparation of catalyst

The composite catalyst Co–Ce–O was prepared by 
the sol–gel method. First, the required amount of Ce 
 (NO3)3.6H2O and Co  (NO3)2.6H2O was dissolved in distilled 
water. After that, the citric acid was added to the solution by 
a metal nitrate to the citric acid molar ratio of one. The mix-
ture was stirred continuously, and then the required quantity 
of ethylene glycol was added dropwise. After the comple-
tion of the reaction, the solution is heated in a water bath at 
80 °C to evaporate water until the gel formation. After the 
formation of proper gel, it calcined at 400 °C for 5 h in the 
muffle furnace.

Experimental procedure

The experimental setup is shown in Fig. 2. All ozone-based 
AOPs studies were performed using a Pyrex glass column 
reactor with 1.5  L volume of the synthetic wastewater 
equipped with a magnetic stirrer. Ozone was generated using 
pure oxygen in the ozone generator (Aquazone Solutions, 
Ahmedabad, India) by corona discharge method and injected 
through a diffuser at the bottom of the glass reactor. The 
reactor was filled with 1 L of synthetic dye solution, and dye 
concentration varied from 100 to 1000 mg/L. The experi-
ments were performed at different pH values between 2 
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Fig. 1  Ozone-based AOPs for wastewater treatment
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and 12, and pH was adjusted using sulfuric acid and caustic 
soda. The samples were collected at different time intervals 
and immediately quenched with 0.1 M  Na2S2O3 solution 
to remove the residual ozone. Then samples were filtered 
through Whatman filter paper and, after that, analyzed using 
a UV spectrophotometer. Finally, the unreacted gases are 
passed through a series of two potassium iodide bottles to 
trap the remaining ozone. All experiments were performed 
at room temperature only. The required quantity of persul-
phate and the prepared catalyst was added in  O3/UV/persul-
phate and  O3/catalyst process, respectively, by keeping all 
other experimental conditions the same. In  O3/UV process, 
A TUV G5 T5 model Philips 11 W lamp was used to con-
duct experiments using the same setup and experimental 
conditions. In the O3/catalyst process, the same procedure 
was followed to see the catalyst's reusability. After each 
run, the catalyst was separated, washed with distilled water, 
then dried and used in the next run. To see the degrada-
tion pathway, tert-butanol (TBA) as a radical scavenger 
was added by keeping all other experimental conditions the 
same. Finally, the collected samples were analyzed using 
a Shimadzu model TOC-V CPH/CPN supplied by Shimadzu 
Corporation, Japan.

Characterization of catalyst

X-ray diffraction (XRD) was performed using an X-pert 
MPD system (Philips) using Cu-Kα radiation (λ = 1.5406 Å). 
Identification of crystal phases was carried out using JCPDS 
(Joint Committee on Powder Diffraction Standards) data 
bank. The detailed structure and morphology were analyzed 
using scanning electron microscope (SEM), and the elemen-
tal composition of the synthesized catalyst was analyzed by 
energy dispersive of X-ray (EDX) using a LEO 44i (JEOL) 
instrument. The surface area of synthesized catalyst was 

found using the nitrogen adsorption–desorption isotherms 
at − 195.126 °C using ASAP 2010 Micromeritics.

Results and discussion

Catalyst characterization

Catalyst morphology was determined by scanning electron 
microscopy (SEM) and depicted in Fig. 3a. As can be seen, 
the catalyst has a rod-like structure with a diameter in the 
nanometer range. Further, a sponge-like structure was also 
observed with pores in the nanometer range. Overall, it was 
observed that all the particles are agglomerated; however, 
the boundaries of different grains are visible for all samples. 
The micrograph reveals the uneven distribution of the dif-
ferent sizes of grains throughout the samples. The elemen-
tal composition of the metal in %wt for Ce–Co–O catalyst 
was determined by the EDS. The results are depicted in 
Fig. 3b. The EDS characterization confirms the presence 
of cerium, cobalt, oxygen, and carbon. The bimetallic cata-
lyst Ce–Co–O prepared by the sol–gel method has 51 wt% 
of cobalt and 24.4 wt% cerium. The EDX results element 
composition of cerium, cobalt and oxygen in the catalyst is 
26.07%, 40.55%, 26.81%, respectively.

The crystalline structure of catalyst Ce–Co–O was ana-
lyzed by the XRD method, and the result is depicted in 
Fig. 3c. The narrow peaks suggest that the catalyst is crys-
talline. The diffraction peaks at 2θ value of 15.41°, 34.58°, 
and 66.16° correspond to cerium oxide (Reference code-
98-062-1709) and peaks at 20.14°, 23.99°, and 43.42° cor-
responding to cobalt oxide (Reference code-04-003-2613). 
The BET surface area, pore diameter, and pore volume 
of catalyst Ce–Co–O were determined by the nitrogen 
adsorption isotherms at − 195 °C. The surface area, pore 

Fig. 2  Experimental setup
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diameter, and pore volume are 61.7987  m2/g, 145.696 Å, 
0.225095  cm3/g, respectively. Beltran et al. [24] prepared 
the  Co3O4/Al2O3 by impregnation method and reported 
the surface area was 128  m2/g. Faria et al. [25] synthe-
sized different catalyst Mn–O, Co–O, Ce–O, Ce–Mn–O 
and reported the surface area of 26  m2/g, 29  m2/g, 72  m2/g, 
and 114  m2/g, respectively. The high surface area ensures 
more active sites and high adsorption of pollutants, which 
facilitates the catalytic activities [4–6].

Effect of applied ozone dose

Ozone dosage is one of the  crucial parameters for the 
removal of RB5 dye, and it also affects the overall cost of 
the process [26]. As depicted  in Fig. 4, the TOC removal 
efficiency increases with increase in the ozone flowrate.

The ozonation process results in 43.82% rise in TOC 
removal as the ozone flow rate increases from 30 to 60 LPH. 
Similar trends were observed in  O3/UV,  O3/UV/PS, and 
 O3/Cat processes. %TOC removal increases from 21.45% 

Fig. 3  Characterization of synthesized catalyst Ce–Co–O a SEM micrograph b EDS spectrum c XRD pattern

Fig. 4  Effect of applied ozone 
dose on % TOC removal 
(process conditions: initial dye 
concentration 100  mgL−1; pH 
7; UV intensity 11 W; TOC: 
PS ratio 1:10; catalyst dosage: 
0.5 g/L; reaction time 80 min)
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to 45.30%, 32.45% to 54.27%, and 61.34% to 86.40% by 
employing  O3/UV,  O3/UV/PS, and  O3/Cat process, respec-
tively. This improved efficiency could result from an increase 
in ozone flow rate, which accelerated the concentration of 
dissolved ozone in the reaction solution. This phenomenon 
helps in the decomposition of ozone and hence formes the 
more reactive species to remove RB5 [27]. The results are 
in good agreement with a reported study where CuO-Cu2O/
MCA was used to degrade textile dye effluent by catalytic 
ozonation process [28].

Effect of initial pH

The efficiency of most AOPs is highly influenced by pH and 
is optimized at every time. Therefore, pH is one of the most 
important parameters that significantly affect the efficiency 
of AOPs and is always considered for optimization of the 
water treatment processes. Therefore, the effect of solution 
pH in the range of 2–12 was studied for all the ozone-based 
AOPs, and results are represented in Fig. 5.

As shown in Fig. 5, the ozonation process shows 69.47% 
higher TOC removal than at 2 pH. Ozonation process shows 
better results at higher pH as alkaline condition favors ozone 
decomposes into free radicals [29]. A similar pattern was 
observed in  O3/UV process, which shows 22.35%, 45.60%, 
and 58.45% TOC removal at pH 2, 7, and 12, respectively. 
 O3/UV/PS process results in 62.34% TOC removal at 12 pH, 
which is 54.21% higher than removal at 2 pH. The improve-
ment in efficiency may be attributed to alkaline condition, 
which somewhat activates persulfate [21, 30, 31]. Addi-
tionally, sulfate radicals react with the hydroxide to form 
hydroxyl radical (OH•) in a highly alkaline medium [30]. 
In contrast, the O3/Cat process observed that the maximum 
RB5 removal was obtained at pH 7, 86.40%. The point of 
zero charges of synthesized catalyst was near 7.4. So, the 
catalyst surface would be positive for pH values less than 7.4 

and negative for more than 7.4. Hence at pH lower than 7.4, 
there was an attraction between negative charge RB5 mol-
ecule and positive charge of the catalyst, which resulted in 
higher degradation efficiency [32, 33]. The higher removal 
at neutral pH suggests that the zero charges of the catalyst 
are more suitable in this system [34, 35].

Effect of UV intensity

The ozonation coupled with UV radiation is an effective 
method for the degradation of recalcitrant pollutants [15]. 
 O3 and UV radiation enhance ozone decomposition by direct 
and indirect production of hydroxyl radicals which can min-
eralize numerous pollutants [36–38].

In the present study, the effect of UV light irradiation was 
studied by varying UV light by UV lamp power 11–66 W, 
and the results are shown in Fig. 6. It can be observed that 
with an increase in UV light intensity, TOC removal for 
RB5 was increasing. For example, in  O3/UV process, TOC 
removal was increased from 58.45 to 72.45% by increasing 
UV power from 11 to 66 W. A similar trend was observed 
in the O3/UV/PS process, which resulted in a 20.34% rise in 
TOC reduction as UV intensity increased from 11 to 66 W.

Effect of persulfate dosage

Experiments were conducted to understand the role of per-
sulfate in the removal of TOC in O3/UV/PS process. A 
couple of experiments were conducted at different TOC: 
PS ratios. Figure 7 depicts that RB5 degradation efficiency 
increased with increasing TOC: PS ratio from 1:10 to 1:60 
while keeping other process variables constant.

The present study represents that maximum TOC 
removal was 90.32% at 1:40 TOC: PS ratio. After that, no 
substantial change in removal efficiencies was observed. 
Somewhat efficiency was decreased at a higher TOC: PS 
ratio. The decrease in efficiency may be due to the excess 
persulfate reacting with  SO4

•− and converting  SO4
• into 
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sulfate ions [21, 39]. Furthermore, sulfate radicals may 
reach each other at higher concentrations and generate 
persulfate anions again [40].

Effect of catalyst dosage

Catalyst dosage is also a very significant parameter in the 
heterogeneous system to optimize the usage of catalysts 
and minimize the operating cost of the process. The pre-
sent study reveals that increasing the catalyst dosage has 
a positive effect on degradation efficiency.

Figure 8 represents that by increasing catalyst dosage 
from 0.5 to 1.0 g/L−1, TOC removal increased from 86.34 
to 96.28%. The increase in efficiency may be attributed to 
the simple reason that more catalyst provides more surface 
area, thus more surface area for direct mechanism and the 
hydroxyl radical generation [26]. In contrast, the excess 
amount of catalyst reduced performance. The reason could 
be that the particles are agglomerated and hence reduced 
surface area and the available active sites on the surface 
of catalyst (Ying Zhao 2020) [41].

Effect of initial dye concentration

The efficiency of the AOPs for the degradation of organic 
pollutants is influenced by the process parameters, such 
as, the type of organic compound, pH, initial dye concen-
tration, and temperature [42]. Further, the effect of initial 
RB5 concentration on its degradation efficiency was evalu-
ated with the initial concentrations of 100, 300, 500, and 
1000  mgL−1, as shown in Fig. 9. The increase in initial 
RB5 concentration was found to reduce the degradation 
efficiency.

In the ozonation process, TOC removal was 51.60% at 
100 mg/L of initial dye concentration, and it was reduced 
to 21.48% at 1000 mg/L of dye concentration. A similar 
trend was observed in all ozone-based AOPs taken into 
study. In addition, %TOC removal was reduced to 53.37%, 
58.51%, and 55.05% in  O3/UV,  O3/UV/PS, and  O3/Cat pro-
cess, respectively, by increasing RB5 dye concentration from 
100 to 1000 mg/L. The probable reason for this is that as dye 
concentration increased, more intermediates resulted due to 
the degradation of parent dye. Thus the available ozone is 
utilized to degrade parent dye plus the intermediated formed 
due to the degradation (Kaoutar El Hassani 2019) [43].

Conclusion

Ozone-based advanced oxidation processes are efficient and 
reliable options for wastewater treatment compared to con-
ventional treatment methods. The main focus of this study 
was to remove the RB5 by employing ozone-based AOPs 
and compare the same. The different operating parameters 
were studied and compared in terms of the TOC removal 
efficiency. Among these, the best performance was observed 
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in the  O3/catalyst process, which resulted in 96% TOC 
removal at optimum operating parameters 60 LPH ozone 
flowrate, 7 pH, 100 mg/L RB5 concentration, and 1 g/L cata-
lyst dosage in 80 min of reaction time. However,  O3/UV/PS 
resulted 90% TOC removal at ozone flowrate 60 LPH, 12 
pH, 100 mg/L RB5 concentration, UV intensity 66 W and 
TOC/PS ratio 1:40 in 80 min of reaction time. Therefore, 
combined ozone-based AOPs were found to be an alterna-
tive method for wastewater treatment and thus may have the 
potential to solve the major environmental issue of degrada-
tion of recalcitrant or refractory, or non-biodegradable COD.
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