NIRMA UNIVERSITY

School of Engineering, Institute of Technology B. Tech. in Chemical Engineering Second Year / Semester III

Course Code	2CH301
Course Title	Heat Transfer Operations

Course Outcomes (CO):

At the end of the course, student will be able to –

- 1. explain the basic concepts and laws of different modes of heat transfer
- 2. apply principles of heat transfer with/ without phase change
- 3. analyse and demonstrate heat transfer to basic engineering systems
- 4. evaluate thermal performance of heat exchange equipments

Course Code	2CH302
Course Title	Fluid Flow Operations

Course Outcomes (CO):

At the end of the course, students will be able to –

- 1. study the concepts of fluid flow operations
- 2. apply fundamental flow equations to practical systems
- 3. estimate the performance of various fluid transport, metering and agitation devices
- 4. assess the behavior of fluids flowing in closed conduits

Course Code	2CH303
Course Title	Solid Fluid Operations

Course Outcomes (CO):

- 1. explain properties and ways to handle particulate solids
- 2. study various mechanical separation techniques and evaluate associated design variables
- 3. apply size reduction concepts to related equipment and assess their performance
- 4. demonstrate the application of fluidization

Course Code	2CH304
Course Title	Organic Chemistry

At the end of the course, students will be able to –

- 1. relate the fundamentals in developing the mechanism for different types of organic reaction,
- 2. outline the synthesis of various organic compounds,
- 3. identify the nature of organic compounds on the basis of investigations and also utilization of material safety data sheet,
- 4. comprehend the importance of organic compounds in industries and its impact on the global economy.

Second Year / Semester IV

Course Code	2CH401
Course Title	Mass Transfer Operations-I

Course Outcomes (CO):

At the end of the course, student will be able to –

- 1. outline the concepts of mass transfer operations
- 2. apply and demonstrate the fundamentals of mass transfer operations
- 3. elaborate the construction and working mechanism of mass transfer equipment
- 4. solve the problems pertaining to various mass transfer operations like diffusion, gas absorption, liquid-liquid extraction and leaching

Course Code	2CH402
Course Title	Chemical Process Industries

Course Outcomes (CO):

- 1. outline various chemical manufacturing processes
- 2. demonstrate the synthesis of chemical products and determine their properties
- 3. interpret the major engineering problems encountered during the manufacturing processes
- 4. compile recent developments and modern techniques in process industries

Course Code	2CH403
Course Title	Instrumentation and Process Control

At the end of the course, student will be able to -

- 1. classify and demonstrate open and closed loop control systems
- 2. select appropriate instruments for various applications in chemical industry
- 3. analyse the order of control system with its transfer function
- 4. design control loops with appropriate controllers and control valve

Course Code	2CH404
Course Title	Chemical Engineering Thermodynamics

Course Outcome:

At the end of the course, student will be able to -

- 1. develop and interpret mathematical expressions of various phase and reaction equilibrium phenomena
- 2. estimate heat and work interactions for different processes
- 3. apply the fundamentals of solution thermodynamics to calculate various phase equilibrium properties of pure components and mixtures
- 4. evaluate equilibrium conversion and product composition of chemical reactions

Course Code	2CH405
Course Title	Process Calculations

Course Outcomes (CO):

- 1. relate units, dimensions and basic chemical engineering principles
- 2. predict the performance of chemical processes by making use of the principles of material balance
- 3. appraise thermal property data for energy balance
- 4. discuss the principles of energy balance applied to chemical processes

Third Year / Semester V

Course Code	2CH501
Course Title	Mass Transfer Operations-II

Course Outcomes (CO):

At the end of the course, student will be able to-

- 1. outline concepts of various types of mass transfer operations
- 2. demonstrate and analyse mass transfer phenomenon in various systems
- 3. elaborate the construction and working mechanism of mass transfer equipment
- 4. solve problems pertaining to mass transfer operations like distillation, humidification, adsorption, drying and crystallization

Course Code	2CH502
Course Title	Environmental Pollution Control and Safety Management

Course Outcomes (CO):

At the end of the course, student will be able to-

- 1. infer the impact of engineering solutions in a global and societal context
- 2. explain issues related to fire and safety in chemical process industry
- 3. select appropriate measures to control and prevent different types of pollution
- 4. determine the parameters pertaining to different types of pollution

Course Code	2CH503
Course Title	Modeling and Simulation

Course Outcomes (CO):

- 1. explain the structure of modular and equation oriented mode simulators
- 2. identify the partitions of flow diagram and tear stream(s) for a given partition
- 3. develop mathematical models for different unit operations in chemical engineering
- 4. apply various simulators for simulation of the chemical processes

Course Code	2CHDE51
Course Title	Petroleum Refining Engineering

At the end of the course, student will be able to-

- 1. measure and predict the properties of crude oil and refinery product fractions
- 2. appreciate the modern techniques and recent developments for producing various refinery products
- 3. analyse fuels and other refinery products
- 4. apply hydrocarbon technology fundamentals in improving production methods

Course Code	2CHDE52
Course Title	Air Pollution Control Engineering

Course Outcomes (CO):

At the end of the course, student will be able to-

- 1. appraise fundamentals of sources, effects, sampling & monitoring of air pollutants
- 2. evaluate meteorological influence on air pollution
- 3. determine appropriate air pollution control systems for the industries
- 4. compare various methods to control specific air pollutant

Course Code	2CHDE53
Course Title	Dyes and Dye Intermediates Technology

Course Outcomes (CO):

- 1. identify various unit operations and unit processes involved in dyes and dye intermediates production
- 2. evaluate major engineering problems associated in production of dyes
- 3. analyze the various methods for synthesis of different intermediates used in dyes
- 4. demonstrate the colour changes with different classes of molecules

Course Code	2CHDE54
Course Title	Food Processing Technology

At the end of the course, student will be able to-

- 1. imbibe basic knowledge of food processing and food laws
- 2. identify various types of food adulteration
- 3. suggest appropriate food conversion operations
- 4. appreciate the modern techniques and recent developments for food processing, preservation and storage

Third Year / Semester VI

Course Code	2CH601
Course Title	Chemical Reaction Engineering-I

Course Outcomes (CO):

At the end of the course, student will be able to-

- 1. classify various reaction types and their mechanism
- 2. analyse and interpret experimental data from batch reactors to obtain rate expressions
- 3. select and design suitable reactor for single and multiple homogeneous reactions
- 4. determine optimal ideal reactor design for multiple reactions

Course Code	2CH602
Course Title	Process Equipment Design

Course Outcomes (CO):

- 1. interpret the basic fundamentals of process plant and equipment design
- 2. select and design equipment for gas solid & liquid liquid separation
- 3. design column for component separation from liquid mixture
- 4. apply fundamental knowledge and design equipment for heat transfer operations

Course Code	2CHDE55
Course Title	Nanotechnology in Chemical Sciences

At the end of the course, student will be able to-

- 1. comprehend the key concepts of material science, chemistry, physics, biology and engineering in the field of nanotechnology
- 2. distinguish various approaches for synthesis of nanomaterials
- 3. demonstrate a conceptual knowledge of instrumentation for the characterization of nanomaterials
- 4. identify the societal issues that may impede the adoption of nanotechnology

Course Code	2CHDE56
Course Title	Industrial Wastewater Treatment

Course Outcomes (CO):

At the end of the course, student will be able to-

- 1. outline conventional treatment units for industrial wastewater
- 2. develop wastewater treatment process for various sectors of process industries
- 3. compare diverse technologies for industrial wastewater treatment
- 4. determine appropriate advanced technologies for industrial wastewater

Course Code	2CHDE57
Course Title	Instrumental Methods in Chemical Sciences

Course Outcomes (CO):

At the end of the course, students will be able to-

- 1. relate the fundamentals of analytical chemistry in the field of engineering
- 2. identify the principles and applications of various analytical techniques
- 3. select and apply the appropriate method for analysis
- 4. evaluate the qualitative and quantitative results of the analysis

Course Code	2CHDE01
Course Title	Advanced Separation Techniques

Course Outcomes (CO):

- 1. appreciate various types of advanced separation techniques
- 2. elaborate the construction and working mechanism of advanced separation equipment
- 3. demonstrate the various methods of membrane preparations
- 4. explore alternative separation and reaction techniques to the existing ones

Course Code	2CHDE02
Course Title	Fertilizer Technology

At the end of the course, student will be able to-

- 1. demonstrate the use of fertilizers to improve soil productivity and crop yield
- 2. comprehend the manufacturing processes to produce various fertilizers
- 3. identify and solve major engineering problems in fertilizer manufacturing
- 4. develop skills to formulate bio fertilizers and mixed fertilizers as per requirement of farm land

Course Code	2CHDE03
Course Title	Polymer Technology

Course Outcomes (CO):

At the end of the course, student will be able to-

- 1. differentiate various polymers, their properties and applications
- 2. identify kinetics of various polymerization techniques
- 3. classify manufacturing and degradation aspects of polymers
- 4. select appropriate polymers for various applications

Course Code	2CHDE04
Course Title	Renewable Energy Sources

Course Outcomes (CO):

- 1. identify the present energy scenario and the need for energy conservation for future
- 2. appreciate various methodologies of tapping energy from non-conventional sources
- 3. explore non-renewable energy resources and effective technologies
- 4. devise application strategies by converting non-conventional energy sources into usable form

Course Code	2CHDE05
Course Title	Applied Chemical Process Thermodynamics

At the end of the course, student will be able to -

- 1. apply mathematical models for phase equilibrium and thermodynamic analysis calculations
- 2. estimate conversion for various chemical reactions by applying basic principles of chemical thermodynamics
- 3. evaluate various activity coefficient models and cubic equations of state for the VLE
- 4. compare the use of thermodynamic models for any process simulator

Course Code	2CHDE06
Course Title	Solid Waste Management

Course Outcomes (CO):

At the end of the course, student will be able to-

- 1. outline the basic functions of solid waste management system
- 2. select and apply appropriate technique for the treatment of solid waste
- 3. make use of different techniques for hazardous waste, biomedical waste and ewaste management
- 4. compare various technologies for solid waste management

Course Code	2CHDE07
Course Title	Material Science

Course Outcomes (CO):

- 1. learn fundamental information of chemical engineering materials
- 2. apprehend the importance of qualitative and quantitative analogue of different materials
- 3. comprehend different material processing methods
- 4. select appropriate materials for various applications

Course Code	2CHOE01
Course Title	Chemical Analytical Techniques

At the end of the course, student will be able to-

- 1. relate the essential theory and principle of analytical techniques in various streams of engineering
- 2. identify the importance of specific analytical technique for any application
- 3. select and apply the appropriate analytical method to evaluate a sample
- 4. interpret the qualitative and quantitative results of analysis

Course Code	2CHOE02
Course Title	Air Pollution Control Techniques

Course Outcomes (CO):

At the end of the course, student will be able to-

- 1. appraise fundamentals of sources, effects, sampling & monitoring of air pollutants
- 2. evaluate air quality and specific source of air pollution
- 3. determine appropriate air pollution control systems for the industries
- 4. compare various methods to control specific air pollutant

Fourth Year / Semester VII

Course Code	2CH701
Course Title	Chemcal Reaction Engineering-II

Course Outcomes (CO):

- 1. comprehend the behaviour of various types of contacting patterns and kinetics involved in non-catalytic systems
- 2. identify non-ideality present and predict its effects on performance of reactor
- 3. develop rate expression, select and design suitable reactor for heterogeneous reactions
- 4. characterize various supported catalysts

Course Code	2CH702
Course Title	Plant Design, Economics and Project Management

At the end of the course, student will be able to-

- 1. summarize process design and development
- 2. develop structure and synthesis of process
- 3. analyze economics of the chemical industry projects
- 4. interpret the management of chemical industry projects

Course Code	2CHDE08
Course Title	Process Integration

Course Outcomes (CO):

At the end of the course, student will be able to-

- 1. outline process systems for continuous and batch processes
- 2. construct network for process utilities
- 3. compare network options and suggest appropriate option for the industry
- 4. evaluate alternatives for process integration in industries

Course Code	2CHDE09
Course Title	Process Plant Utilities and Energy Efficiency

Course Outcomes (CO):

At the end of the course, student will be able to-

- 1. select utilities and equipments for process requirement
- 2. identify energy saving opportunities in process utilities
- 3. analyze the utility system for energy conservation and efficiency
- 4. evaluate the performance of utility system

Course Code	2CHDE10
Course Title	Bioprocess and Bioseparation Engineering

Course Outcomes (CO):

- 1. apply knowledge of biological science and engineering to bio-catalysed reaction system
- 2. comprehend the mechanism and kinetics of enzyme/microbial catalysed reactions
- 3. identify suitable bioreactor for desired application
- 4. select suitable separation system for downstream processing

Course Code	2CHDE11
Course Title	Fundamentals of Piping Design

At the end of the course, student will be able to-

- 1. identify the piping fundamentals, codes and standards
- 2. select pipe fittings and make drawings and dimensioning
- 3. distinguish pipe material specifications
- 4. evaluate pressure drop of pipe systems

Course Code	2CHDE12
Course Title	Pharmaceutical Technology

Course Outcomes (CO):

At the end of the course, student will be able to-

- 1. relate chemical engineering operations with drugs and dosage form manufacturing
- 2. apply various chemical unit operations involved in drug manufacturing
- 3. evaluate different dosage forms
- 4. analyse good manufacturing practices

Course Code	2CHDE13
Course Title	Transport Phenomena

Course Outcomes (CO):

- 1. correlate analogy between different transport phenomena
- 2. predict transport properties for gases, liquids, solids, and mixtures
- 3. apply shell balance for energy, mass and momentum transport for various systems and develop mathematical expressions for transport of energy, mass and momentum
- 4. interpret transport property distribution for various systems

Course Code	2CHDE14
Course Title	Environmental Impact Assessment

At the end of the course, student will be able to-

- 1. illustrate concepts of sustainable development and EIA from perspective of chemical industries
- 2. relate legal aspects of EIA
- 3. plan overall process of EIA
- 4. interpret EIA reports of chemical industries

Course Code	2CHDE15
Course Title	Process Optimization

Course Outcome:

At the end of the course, student will be able to -

- 1. formulate the mathematical model for a given system
- 2. identify different mathematical models to fit the experimental data
- 3. select appropriate numerical method for the optimization of single variable and multivariable functions
- 4. apply linear programming and its application in optimization of chemical processes

Course Code	2CHDE16
Course Title	Advances in Chemical Process Control

Course Outcome:

At the end of the course, student will be able to-

- 1. analyse a feedback control system
- 2. explain advanced control systems
- 3. design control systems for multivariable processes
- 4. apply digital control system in chemical plant

Course Code	2CHDE17
Course Title	Unit Processes

Course Outcome:

- 1. adapt the concepts of kinetics and thermodynamics to various unit processes
- 2. acquire thorough knowledge of various manufacturing processes
- 3. solve associated major engineering problems
- 4. appreciate recent developments in unit process industries

Course Code	2CH703
Course Title	Minor Project

At the end of the course, student will be able to-

- 1. make use of acquired knowledge for the problem identification and definition
- 2. analyze the technical aspects of the project with a comprehensive and systematic approach
- 3. propose and select the appropriate solution
- 4. appraise the importance of an individual / team for effective execution
- 5. compile and conclude the project with effective communication amongst peers, mentors and society

Course Code	2CH704
Course Title	Summer Internship

Course Outcomes (CO):

At the end of the course, student will be able to-

- 1. perceive a better understanding of the engineering workplace
- 2. adapt competencies necessary for professional career
- 3. value interpersonal and human relationship skills
- 4. build the foundation for industrial internship / major project

Fourth Year / Semester VIII

Course Code	2CH801
Course Title	Major Project/Internship

Course Learning Outcomes (CO):

After successful completion of the course, student will be able to-

- 1. make use of acquired knowledge for the problem identification and definition related to industry / research / societal need
- 2. analyze the technical aspects of the project with a comprehensive and systematic approach
- 3. select the appropriate modern tool(s) and technique(s) for problem solving
- 4. propose and select the appropriate and cost effective solution
- 5. appraise the importance of an individual / team for effective execution
- 6. value the health, environment, safety and ethical practices during the project
- 7. perceive the possibility of scalability and scope of intellectual property rights
- 8. compile and conclude the project with effective communication amongst peers, mentors and society
- 9. develop life-long learning skills for productive career

Course Code	2CHOE26 (Open Elective-Mixed Pool)
Course Title	Introduction to Fire and Safety Engineering

At the end of the course, student will be able to-

- 1. explain the fire process and its chemistry
- 2. choose fire protection system
- 3. analyze fire accident
- 4. select fire insurance and policies

Course Code	2CHOE27 (Open Elective-Mixed Pool)
Course Title	Green Chemistry and Technology

Course Outcomes (CO):

- 1. comprehend the principles and concepts of green chemistry
- 2. identify the societal issues that may impede the adoption of green energy
- 3. recognize the importance of green chemistry and technology for safer environment
- 4. explain and apply the principles of green chemistry and technology