## NIRMA UNIVERSITY

## **Institute of Technology**

# M Tech Computer Science and Engineering (Data Science)

#### Semester – I

| L | Т | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code  | 3CS1109                          |
|--------------|----------------------------------|
| Course Title | Complexity Theory and Algorithms |

#### **Course Learning Outcomes (CLOs):**

At the end of the course, students will be able to -

- 1. comprehend time & space complexity and formal aspects of algorithms
- 2. identify appropriate data structures and methodologies for efficient algorithm design
- 3. design and implement efficient algorithms using various approaches

| L | Τ | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 3CS1111                  |
|-------------|--------------------------|
| Course Name | Applied Machine Learning |

## **Course Learning Outcomes (CLOs):**

At the end of the course, students will be able to -

- 1. comprehend statistical methods as basis of machine learning domain
- 2. apply and evaluate variety of machine learning algorithms
- 3. implement machine learning techniques to solve problems in interdisciplinary domains

| L | Τ | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 3CS1112                   |
|-------------|---------------------------|
| Course Name | Advanced Database Systems |

#### **Course Learning Outcomes (CLO):**

- 1. assess various storage and retrieval methods through appropriate indexing
- 2. design and analyze efficiency of algorithms for database operations
- 3. comprehend contemporary database architectures and its relevant issues

| L | Т | Р | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

| Course Code | 3CS1113                                  |
|-------------|------------------------------------------|
| Course Name | Applied Mathematics for Computer Science |

At the end of the course, students will be able to –

- 1. comprehend the mathematical fundamentals related to sets, probability, statistics, linear algebra and mathematical optimization
- 2. apply the mathematical principles to solve wide range of problems in computer science
- 3. use the mathematical concepts as per the need of the application

| L | Т | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code  | 3CS4101                          |
|--------------|----------------------------------|
| Course Title | Introduction to Scalable Systems |

## **Course Learning Outcomes (CLOs):**

At the end of the course, students will be able to -

- 1. comprehend the distributed computing models for scalable systems
- 2. analyse the scalable systems in the context of various performance parameters
- 3. apply concepts of scalable systems in designing data intensive applications

| L | Т | Р | С |
|---|---|---|---|
| 1 | 0 | 0 | 0 |

| Course Code  | 3SP1103                 |
|--------------|-------------------------|
| Course Title | Ethics for Data Science |

# **Course Learning Outcomes (CLOs):**

- 1. describe the principles of fairness, accountability and transparency in data science
- 2. realize the ethical considerations regarding research, privacy and control of information and big data
- 3. comprehend the contemporary practices in data handling

### Semester – II

| L | Τ | Р | С |
|---|---|---|---|
| 2 | 0 | 2 | 3 |

| Course Code | 3CS4201                   |
|-------------|---------------------------|
| Course Name | Exploratory Data Analysis |

#### **Course Learning Outcomes (CLOs):**

At the end of the course, students will be able to

- 1. comprehend the basic concepts of probability and statistics and their need in engineering
- 2. apply concepts and methods of probability and statistics in simulation and modeling of various computer science problems
- 3. perform probabilistic and statistical analysis of data related to computer science research and projects

| L | Τ | Р | С |
|---|---|---|---|
| 2 | - | - | 2 |

| Course Code         | 3\$\$1201                    |
|---------------------|------------------------------|
| <b>Course Title</b> | Research Methodology and IPR |

#### **Course Outcomes (COs):**

At the end of the course, students will be able to -

- 1. formulate a research problem for a given engineering domain.
- 2. analyse the available literature for given research problem.
- 3. develop technical writing and presentation skills.
- 4. comprehend concepts related to patents, trademark and copyright.

|              |               | L | Τ | Р  | С |
|--------------|---------------|---|---|----|---|
|              |               | - | - | 10 | 5 |
| Course Code  | 3CS4202       |   |   |    |   |
| Course Title | Minor Project |   |   |    |   |

#### **Course Outcomes (COs):**

- 1. identify the issues related with the recent trends in the field of computer science and its applications
- 2. formulate the problem definition, analyze and do functional simulation of the same

- 3. design, implement, test and verify the proposed solution related to problem definition
- 4. compile, comprehend and present the work carried out

| L | Τ | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 3CS42D101                  |
|-------------|----------------------------|
| Course Name | Natural Language Computing |

At the end of the course, students will be able to

- 1. comprehend the key concepts of NLP which are used to describe and analyse language
- 2. perform POS tagging and generate context free grammar for English language
- 3. realize semantics and pragmatics of English language for processing
- 4. implement natural language processing task

| L | Τ | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 3CS42D102             |
|-------------|-----------------------|
| Course Name | Information Retrieval |

# **Course Learning Outcomes (CLOs):**

- 1. comprehend concepts, algorithms, data/file structures necessary to design, and implement IR systems
- 2. apply methodology for the design and evaluation of IR systems
- 3. compare major types of IR systems, the different theoretical foundations underlying these systems
- 4. develop the practical skills for IR systems design

| L | Τ | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 3CS42D103                     |
|-------------|-------------------------------|
| Course Name | Advanced Statistical Learning |

At the end of the course, students will be able to

- 1. comprehend the fundamentals of various statistical learning methods
- 2. interpret and critically evaluate the outcomes of statistical analysis
- 3. implement statistical learning methods

| L | Τ | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code  | 3CS42D104                    |
|--------------|------------------------------|
| Course Title | Large Scale Graph Algorithms |
|              |                              |

#### **Course Learning Outcomes (CLOs):**

At the end of the course, students will be able to

- 1. visualize real-life networks as large scale graphs
- 2. transform basic graph algorithms in to large scale graph algorithms for parallel and distributed environment
- 3. practice large scale graph algorithms on appropriate tools for complex data sources
- 4. comprehend various optimization techniques and considerations for achieving parallel scalability when processing irregular graph data

| L | Τ | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 3CS42D105                     |
|-------------|-------------------------------|
| Course Name | Data Mining and Visualization |

## **Course Learning Outcomes (CLOs):**

- 1. identify a number of common data domains and corresponding analysis tasks, including multivariate data, networks, text and cartography
- 2. comprehend the key processes of data mining, data warehousing and knowledge discovery process

- 3. implement data mining techniques to solve problems in other disciplines in a mathematical way
- 4. exercise building and evaluating visualization systems

| L | Τ | Р | С |
|---|---|---|---|
| 2 | 0 | 2 | 3 |

| Course Code | 3CS12D201             |
|-------------|-----------------------|
| Course Name | Blockchain Technology |

At the end of the course, students will be able to

- 1. comprehend the structure of a Blockchain networks
- 2. evaluate security issues relating to Blockchain and cryptocurrency
- 3. design and analyze the applications based on Blockchain technology

| L | Τ | Р | С |
|---|---|---|---|
| 2 | 0 | 2 | 3 |

| Course Code | 3CS42D201             |
|-------------|-----------------------|
| Course Name | Analytics for the IoT |

## **Course Learning Outcomes (CLOs):**

- 1. implement the architectural components and protocols for application development
- 2. identify data analytics and data visualization tools as per the problem characteristics
- 3. collect, store and analyse IoT data



| Course Code  | 3CS42D202                |
|--------------|--------------------------|
| Course Title | Advanced Storage Systems |

At the end of the course, students will be able to

- 1. comprehend modern architecture for storage systems
- 2. identify appropriate storage approach applicable for the given application
- 3. analyse different distributed and parallel file system performance

| L | Τ | Р | С |
|---|---|---|---|
| 2 | 0 | 2 | 3 |

| Course Code | 3CS42D203      |
|-------------|----------------|
| Course Name | Bioinformatics |

### **Course Learning Outcomes (CLOs):**

At the end of the course, students will be able to

- 1. comprehend the intersection of life and information sciences, gene expression, and database queries
- 2. explain how to locate and extract data from key bioinformatics databases and resources
- 3. apply the knowledge of the basic principles and concepts of biology, computer science and mathematics in an integrated way

| L | Τ | Р | С |
|---|---|---|---|
| 2 | 0 | 2 | 3 |

| Course Code  | 3CS42D204                   |
|--------------|-----------------------------|
| Course Title | Data and Knowledge Security |

#### **Course Learning Outcomes (CLOs):**

- 1. comprehend the security requirements of data and knowledge
- 2. analyse the security requirements of the big data systems
- 3. suggest security solutions for big data systems

| L | Τ | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 3CS12D301        |
|-------------|------------------|
| Course Name | Big Data Systems |

At the end of the course, students will be able to

- 1. analyse the big data analytic techniques for business applications.
- 2. manage big data using different tools and frameworks.
- 3. design efficient algorithms for mining the data from large volumes.
- 4. implement the HADOOP and MapReduce technologies associated with big data analytics

| L | Τ | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 3CS12D302                      |
|-------------|--------------------------------|
| Course Name | Deep Learning and Applications |

# **Course Learning Outcomes (CLOs):**

- 1. comprehend the strengths and weaknesses of deep networks
- 2. analyze suitability of different deep networks for variety of problems
- 3. design and implement deep networks for solving problems pertaining to computer science and interdisciplinary research

| L | Τ | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 3CS12D304                   |
|-------------|-----------------------------|
| Course Name | Multicore and GPU Computing |

At the end of the course, students will be able to

- 1. comprehend modern multi-core processor micro-architectures and interconnect technologies
- 2. analyse the memory hierarchy and performance characteristics
- 3. recognize the need for atomic operations and variety of locking mechanisms
- 4. explore architecture of general purpose graphics processing units and their common programming models

| L | Τ | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 3CS42D301    |
|-------------|--------------|
| Course Name | Econometrics |

# **Course Learning Outcomes (CLOs):**

- 1. use broad knowledge of regression analysis relevant for analyzing economic data
- 2. interpret and critically evaluate the outcomes of empirical analysis
- 3. apply elementary procedures for model validation in the single equation context
- 4. perform statistical tests to investigate whether the classical assumptions in regression analysis are satisfied
- 5. implement econometric methods

| L | Τ | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 3CS42D302              |
|-------------|------------------------|
| Course Name | Social Media Analytics |

At the end of the course, students will be able to

- 1. comprehend the fundamental elements and basic concepts in social media analytics
- 2. use important metrics and models to characterize and measure networks
- 3. apply the principle of social media analyzing techniques such as community detection, influence propagation and maximization, link prediction

| L | Т | Р | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

| Course Code | 3CS42D303            |
|-------------|----------------------|
| Course Name | Predictive Analytics |

# **Course Learning Outcomes (CLOs):**

- 1. apply statistical and regression analysis methods to identify new trends and patterns, uncover relationships, create forecasts, predict likelihoods, and test predictive hypotheses
- 2. compare the underlying predictive modeling techniques
- 3. develop the modeling skills from an industry perspective
- 4. select appropriate predictive modeling approaches suitable to various tasks

#### Semester-III

| L | Τ | Р | С  |
|---|---|---|----|
| - | - | - | 14 |

| Course Code         | 3CS1302                |
|---------------------|------------------------|
| <b>Course Title</b> | Major Project Part – I |

## **Course Learning Outcomes (CLOs):**

At the end of the course, the students will be able to -

- 1. Understand the issues related with the recent trends in the field of engineering and its applications
- 2. Formulate the problem definition, analyze and do functional simulation of the same
- 3. Design, Implement, test and verify the engineering solution related to problem definition
- 4. Compile, Comprehend and Present the work carried out
- 5. Manage Project

## Semester-IV

| L | Τ | Р | С  |
|---|---|---|----|
| - | - | - | 14 |

| <b>Course Code</b>  | 3CS1402                 |
|---------------------|-------------------------|
| <b>Course Title</b> | Major Project Part – II |
|                     |                         |

#### **Course Learning Outcomes (CLOs):**

- 1. Understand the issues related with the recent trends in the field of engineering and its applications
- 2. Formulate the problem definition, analyze and do functional simulation of the same
- 3. Design, Implement, test and verify the engineering solution related to problem definition
- 4. Compile, Comprehend and Present the work carried out
- 5. Manage Project