#### NIRMA UNIVERSITY

| Institute:            | Institute of Technology                               |  |  |
|-----------------------|-------------------------------------------------------|--|--|
| Name of Programme:    | B.Tech.(All Programmes), Integrated B.Tech. (CSE)-MBA |  |  |
| Course Code:          | XXXX                                                  |  |  |
| Course Title:         | Introduction to AI & ML                               |  |  |
| Course Type:          | Common                                                |  |  |
| Year of Introduction: | 2022-23                                               |  |  |

| L | T | <b>Practical Component</b> |    |   |   | C |
|---|---|----------------------------|----|---|---|---|
|   |   | LPW                        | PW | W | S |   |
| 2 | - | 2                          | -  | - | - | 3 |

### Course Learning Outcomes (CLOs):

At the end of the course, the student will be able to -

- define the need of artificial intelligence and machine learning (BL1)
- 2. explain working of artificial intelligence and machine learning (BL2) algorithms
- 3. make use of machine learning techniques to solve problems in different (BL2) domains using scientific programming
- 4. identify the patterns in the data using scientific programming language (BL3)

## Syllabus:

### **Total Teaching hours: 30**

| Unit     | Syllabus                                                                                                                                  | Teaching hours |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Unit-I   | Foundational Concepts in Artificial Intelligence                                                                                          | 05             |
|          | Introduction to Computational Systems, Problem Formulation and                                                                            |                |
|          | Problem Solving, Intelligence vs Artificial Intelligence (AI), History of AI, Data vs Information vs Knowledge, Rule-based and Structural |                |
|          | Knowledge Representation, Jargons of AI, Importance and                                                                                   |                |
|          | Applications of AI in different domains                                                                                                   |                |
| Unit-II  | Data Exploration                                                                                                                          | 06             |
|          | Types of Data, Data Collection Methods, Data Characteristics,                                                                             |                |
|          | Handling Missing Values, Introduction to Data Visualization, Data                                                                         |                |
|          | Exploration, Data Analysis and Data Engineering                                                                                           |                |
| Unit-III | Introduction to State Space and State Space Search                                                                                        | 05             |
|          | State, State Space, State Space Search, Hill Climbing, Steepest Ascent                                                                    |                |
|          | Hill Climbing, Solving Problems using State Space Search                                                                                  |                |
| Unit-IV  | Introduction to Machine Learning                                                                                                          | 10             |
|          | Role of Machine Learning (ML) in AI, Applications of Machine                                                                              |                |
|          | Learning in different Domains, Jargons of ML, Supervised Learning –                                                                       |                |
|          | Classification vs Regression, KNN for classification and regression,                                                                      |                |
|          | Unsupervised Learning - K means algorithm, Biological Neural                                                                              |                |
|          | Networks to Artificial Neural Networks, Perceptron Learning,                                                                              |                |
|          | Reinforcement Learning – Q Learning                                                                                                       |                |
| Unit-V   | Introduction to Deep Learning                                                                                                             | 04             |
|          | Role of DL in AI, Machine Learning vs Deep Learning, Applications                                                                         |                |
|          | of Deep Learning in Different Domains, Types of Deep Networks                                                                             |                |

#### Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents

### Suggested Readings/ References:

- 1. Artificial Intelligence, Kevin Knight, Elaine Rich, and Shivashankar B. Nair, McGraw Hill Education
- 2. Data Mining-Concepts and Techniques, Jiawei Han, Micheline Kamber and Jian Pei, Morgan Kaufmann
- 3. Elements of Artificial Neural Networks, Kishan Mehrotra, MIT Press
- 4. Machine Learning: A Multistrategy Approach, Tom M. Mitchell, McGraw Hill Education India
- 5. Artificial Intelligence A Modern Approach, Russell, S. and Norvig, P, Prentice Hall

# Suggested List of Experiments:

| Sr.         | Title                                                                                         | Hours |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------|-------|--|--|--|
| 1           | Introduction to Python language, libraries and basic                                          | 02    |  |  |  |
|             | constructs using Virtual Lab. (https://python-                                                |       |  |  |  |
|             | iitk.vlabs.ac.in/List%20of%20experiments.html)                                                |       |  |  |  |
| 2           | Write a program to calculate and report various                                               | 02    |  |  |  |
|             | descriptive statistics measures.                                                              | 02    |  |  |  |
| 3           | Write a program to handle missing values in data.                                             |       |  |  |  |
| 4           | 1 6                                                                                           |       |  |  |  |
| _           | brute-force approach.                                                                         |       |  |  |  |
| 5           | Write a program for a 6-city symmetric TSP using a                                            | 02    |  |  |  |
| 2           | nearest neighbor heuristic.                                                                   |       |  |  |  |
| 6           | Write a program that can read Boston house price                                              | 02    |  |  |  |
|             | data and divide these data in training and test set as                                        |       |  |  |  |
| 7           | per the user choice                                                                           | 02    |  |  |  |
| /           | Write a program for classifying iris images using a KNN classifier.                           | 02    |  |  |  |
| 8           | Implement accuracy, precision, recall and f1-measure                                          | 02    |  |  |  |
| o .         | for Practical 7.                                                                              | 02    |  |  |  |
| 9           | Write a program for predicting selling price of                                               | 02    |  |  |  |
|             | houses in Boston dataset.                                                                     | -     |  |  |  |
| 10          | Implement MAE, MSE, RMSE and MAPE for                                                         | 02    |  |  |  |
|             | Practical 9.                                                                                  |       |  |  |  |
| 11          | Write a program to cluster data in iris flower dataset                                        | 02    |  |  |  |
| 10 Managara | using k-means algorithm.                                                                      |       |  |  |  |
| 12          | Evaluate the outcome of Practical 11 against various                                          | 02    |  |  |  |
| 10          | performance metrics.                                                                          | 2000  |  |  |  |
| 13          | Implement the Perceptron Learning Algorithm.                                                  | 02    |  |  |  |
| 14          | Implement AND gate using perceptron learning                                                  | 02    |  |  |  |
| 15          | algorithm                                                                                     | 0.2   |  |  |  |
| 13          | Can you implement XOR gate using a perceptron                                                 | 02    |  |  |  |
|             | learning algorithm? Write a code and justify your answer through reasoning and demonstration. |       |  |  |  |
| 27.4        | answer unbugn reasoning and demonstration.                                                    |       |  |  |  |

Suggested Case List:

-NA-